"САНИТАРНО - ЭПИДЕМИОЛОГИЧЕСКИЙ НАДЗОР ЗА ИСПОЛЬЗОВАНИЕМ СИНТЕТИЧЕСКИХ ПОЛИЭЛЕКТРОЛИТОВ В ПРАКТИКЕ ПИТЬЕВОГО ВОДОСНАБЖЕНИЯ. МЕТОДИЧЕСКИЕ УКАЗАНИЯ. МУ 2.1.4.1060-01" (утв. Главным государственным санитарным врачом РФ 18.07.2001)



МЕТОДИЧЕСКИЕ УКАЗАНИЯ


1. Разработаны авторским коллективом в составе: д.м.н., профессор М.В. Богданов, д.м.н., профессор А.А. Королев (Московская медицинская академия им. И.М. Сеченова); д.м.н., профессор З.И. Жолдакова (НИИ экологии человека и гигиены окружающей среды им. А.Н. Сысина РАМН); А.И. Роговец (Департамент ГСЭН Минздрава России); Н.И. Садова (МГП "Мосводоканал").

2. Использованы материалы и предложения: к.м.н., с.н.с. Б.Р. Витвицкой (Московская медицинская академия им. И.М. Сеченова); к.м.н., в.н.с. В.Г. Смирнова (Институт токсикологии Минздрава России); д.х.н., профессора А.Т. Лебедева (МГУ); к.х.н. Л.Ф. Кирьяновой, Е.Н. Тульской (НИИ экологии человека и гигиены окружающей среды им. А.Н. Сысина РАМН).

3. Утверждены и введены в действие Главным государственным санитарным врачом Российской Федерации - Первым заместителем Министра здравоохранения Российской Федерации Г.Г. Онищенко 18 июля 2001 г.

4. Введены впервые.

1. Область применения

1.1. Настоящие Методические указания устанавливают гигиенические требования к организации и осуществлению контроля использования синтетических полиэлектролитов в практике питьевого водоснабжения.

1.2. Методические указания предназначены для предприятий, организаций и иных хозяйственных субъектов (независимо от подчиненности и форм собственности), деятельность которых связана с применением синтетических полиэлектролитов в практике очистки питьевой воды, органов и учреждений санитарно-эпидемиологической службы, осуществляющих государственный санитарно-эпидемиологический и ведомственный надзор за качеством подготовки питьевой воды.

2. Нормативные ссылки

2.1. Закон Российской Федерации "О санитарно-эпидемиологическом благополучии населения" N 52-ФЗ от 30.03.99.

2.2. Закон Российской Федерации "Об охране окружающей среды" N 2060-1 от 19.12.91.

2.3. Водный кодекс Российской Федерации N 167-ФЗ от 16.11.95.

2.4. Закон Российской Федерации "О лицензировании отдельных видов деятельности" N 158-ФЗ от 25.09.98.

2.5. "Положение о государственной санитарно-эпидемиологической службе Российской Федерации". Постановление Правительства Российской Федерации N 554 от 24.07.00.

2.6. Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества. СанПиН 2.1.4.559-96. М., 1996.

2.7. "Порядок разработки, экспертизы, утверждения, издания и распространения нормативных и методических документов системы государственного санитарно-эпидемиологического нормирования": Сборник. Р 1.1.001-1.1.005-96.

3. Общие положения

3.1. Синтетические полиэлектролиты широко применяются в технологиях очистки питьевой воды. Методы физико-химической очистки, основанные на использовании синтетических полиэлектролитов, не имеют альтернативы с технологических и гигиенических позиций благодаря высокой эффективности, относительной простоте, универсальности и надежности.

3.2. К синтетическим полиэлектролитам относятся высокомолекулярные полимерные соединения, растворимые и диссоциирующие в воде на ионы. При диссоциации молекулы полиэлектролита образуется один сложный высокомолекулярный поливалентный ион и большое количество простых ионов с низкой валентностью. По знаку заряда высокомолекулярного иона различают анионные, катионные и амфотерные (анионно-катионные) полиэлектролиты.

3.3. По назначению синтетические полиэлектролиты разделяются на коагулянты и флокулянты. Коагулянты - это полиэлектролиты, приводящие к агрегации взвешенных частиц за счет нейтрализации заряда и химического связывания. В результате применения коагулянтов происходит дестабилизация коллоидной суспензии и образование микрохлопьев. К флокулянтам относятся полиэлектролиты, способствующие образованию агрегатов за счет объединения нескольких частиц через макромолекулы адсорбированного или химически связанного полимера. Большая молекулярная масса флокулянтов способствует образованию мостиков между микрохлопьями и формированию макрохлопьев.

3.4. Полимерные коагулянты и флокулянты применяются для очистки природных вод от взвешенных и коллоидно-дисперсных веществ. При этом одновременно снижаются: цветность, запахи, привкусы и микробная загрязненность воды.

3.5. Эффективность очистки воды синтетическими электролитами зависит от ряда факторов: природы и количества добавляемого полимера, его молекулярной массы и заряда, условий введения реагента, концентрации взвешенных веществ и их физико-химических характеристик, pH, температуры, электропроводности воды и др.

3.5.1. Природа полимера. Наиболее эффективны синтетические полиэлектролиты с высокой степенью полимеризации и большой молекулярной массой. Большей эффективностью обладают полиэлектролиты с вытянутой молекулой (линейные полимеры).

3.5.2. Доза полимера. Коагулирующее или флокулирующее действие реагента проявляется при определенном соотношении между его концентрацией и содержанием взвешенных твердых частиц. Обычно область эффективной стабилизации и флокуляции дисперсий соответствует содержанию полимера в количестве 0,4 - 2% от веса твердой фазы (оптимальная доза). Большая доза высокомолекулярного полимера препятствует агрегации, повышая устойчивость суспензий.

3.5.3. Молекулярная масса. Флокулирующая способность неионных полимеров и одноименно заряженных полиэлектролитов, как правило, возрастает с увеличением степени их полимеризации, что приводит к уменьшению оптимальной дозы реагента. Для синтетических катионных коагулянтов, заряженных противоположно взвешенным частицам, молекулярная масса играет меньшую роль и эффективность их действия, в первую очередь, зависит от величины заряда.

3.5.4. Концентрация дисперсной фазы, размер и природа частиц. В разбавленных растворах между концентрацией твердой фазы и количеством полимера, вызывающим максимальную коагуляцию / флокуляцию, существует прямо пропорциональная зависимость. Частицы, имеющие размер менее 50 мю m, флокулируются наиболее эффективно. Для агрегации взвешенных веществ органического происхождения требуются катионные реагенты, а для неорганических взвесей - анионные.

3.5.5. pH и температура воды. Гидролиз и ионный заряд полимера напрямую зависят от pH и температуры. Анионные реагенты более эффективны в щелочной среде, а неионные и умеренно катионные полимеры - в кислой среде. При низкой температуре воды процесс агрегации частиц с помощью синтетических полиэлектролитов ухудшается.

3.6. Синтетические органические высокомолекулярные коагулянты могут применяться совместно с неорганическими коагулянтами (соли алюминия и железа) или, что характерно для современных технологий очистки воды, в качестве самостоятельных, основных реагентов. По сравнению с неорганическими коагулянтами полимерные коагулянты обладают следующими преимуществами:

- обеспечивают агрегацию частиц при значительно меньших дозах реагента;

- эффективны в широком диапазоне pH очищаемой воды;

- увеличивают скорость разделения жидкой и твердой фаз;

- не изменяют pH очищенной воды;

- минимизируют объем легко обезвоживаемого осадка;

- не добавляют в очищаемую воду ионов металлов;

- более эффективны для устранения вирусов, цист простейших и одноклеточных водорослей.

3.7. Синтетические органические высокомолекулярные флокулянты применяются для увеличения эффекта очистки воды после ее коагуляции неорганическими или органическими коагулянтами.

Флокулянты позволяют:

- увеличить скорость захвата взвешенных частиц;

- ускорить процесс образования макрохлопьев и увеличить их плотность;

- уменьшить оптимальную дозу коагулянта;

- увеличить производительность, эффективность и срок службы фильтров для очистки воды;

- минимизировать расходы и трудоемкость, связанные с удалением осадков.

3.8. Синтетические полиэлектролиты являются малотоксичными соединениями, но, как правило, содержат мономеры и примеси, нередко представляющие огромный риск для здоровья населения. В то же время ПДК в воде для подавляющего большинства полиэлектролитов установлены по общесанитарному показателю вредности. Применительно к оценке качества питьевой воды они имеют второстепенное значение, т.к. пороговые уровни по органолептическому и МНК по токсикологическому признакам вредности на несколько порядков выше, чем остаточные количества синтетических полиэлектролитов в очищенной воде. Кроме того:

- большинство реагентов применяется в дозах, сопоставимых с гигиеническими нормативами;

- при использовании в процессах осветления воды реагентов в оптимальных дозах остаточные концентрации их заведомо ниже ПДК;

- в настоящее время отсутствуют доступные аналитические методы, позволяющие достоверно определять содержание полимеров и мономеров на уровнях, реально присутствующих в воде после применения синтетических полиэлектролитов в оптимальных дозах;

- контроль качества питьевой воды, прошедшей очистку с использованием синтетических полиэлектролитов, до настоящего времени проводится в нашей стране по остаточным концентрациям полимеров, без учета содержания мономеров и других опасных примесей.

3.9. Реальная минимизация риска для здоровья населения, связанного с применением для очистки воды синтетических полиэлектролитов, может быть достигнута при следующих условиях:

- контроль качества при производстве синтетических полиэлектролитов (оценка и регламентирование сырьевых компонентов; стабилизация условий синтеза; контроль примесей, побочных и промежуточных продуктов);

- расчет допустимого содержания мономеров и токсичных примесей в полимерном продукте с учетом их ПДК и референтных доз;

- обоснование максимально допустимой дозы реагентов, обеспечивающей безопасное их использование в технологиях очистки воды.

4. Классификация и общая характеристика синтетических полиэлектролитов

4.1. В практике очистки питьевой воды используются реагенты, подавляющее большинство которых относится к следующим четырем группам соединений:

- полиамины (полиэпихлоргидриндиметиламины, полиЭПИ-ДМА);

- полидиаллилдиметиламмоний хлориды (полиДАДМАХи);

- полиакриламиды (ПАА);

- смеси (сополимеры).

4.2. Полиамины и полиДАДМАХи характеризуются очень высоким катионным зарядом при относительно невысокой молекулярной массе, что определяет их использование в качестве коагулянтов при очистке питьевой воды. Полиакриламиды представлены в неионной, анионной и катионной форме, имеют молекулярную массу от 1 до 20 млн. и применяются в качестве флокулянтов.

4.3. Полиамины (полиЭПИ-ДМА)

4.3.1. Полимеры на основе эпихлоргидриндиметиламина производятся путем реакции конденсации первичных или вторичных аминов с эпихлоргидрином:

CH3 CH3
+
CH2 CH CH2Cl + HN > CH2 CH CH2-N
/ n-
О CH3 OH CH3 Cl
Эпихлоргидрин Диметиламин Полиамин

4.3.2. Эмпирическая формула (CaHbNcOdCle)n, где a, b, c, d и e - переменные, определяемые используемыми реагентами и их молярным соотношением. Регистрационные номера CAS 25988-97-0; 68583-79-1; 42751-79-1.

4.3.3. Реагент представляет собой водный раствор в форме вязкой жидкости с содержанием активного вещества от 30 до 50%. Продукт смешивается с водой при любых концентрациях (пропорциях).

4.3.4. Молекулярная масса от 10 тыс. до 1 млн. Катионный заряд расположен на главной цепи. Вязкость 50%-ного раствора от 40 до 20000 сПз.

4.3.5. В товарном продукте обнаруживаются вещества, которые используются при синтезе полимера или появляются в результате гидролиза. Важнейшими из них являются эпихлоргидрин, глицидол, 1,3-дихлорпропанол, 2,3-дихлорпропанол и диметиламин.

4.4. Полидиаллилдиметиламмоний хлорид (полиДАДМАХ)

4.4.1. Реагент полиДАДМАХ синтезируется из аллилхлорида и диметиламина:

CH2=CHCH=CH2
CH3 CH2CH2
+/ -
2CH2=CH-CH2Cl + HN-->N Cl
/
CH3 CH3 CH3
Аллилхлорид Диметиламин ДАДМАХ

Полимеризация происходит циклическим путем с образованием следующей структуры:

CH2-CH CH-CH2
CH2 CH2
+/ -
NCl
/
CH3 CH3
n
ПолиДАДМАХ

4.4.2. Эмпирическая формула: -(C8H16NCl)n-. Регистрационный номер CAS 26062-79-3.

4.4.3. Реагент может быть представлен в виде порошка или в жидкой форме с концентрацией активного вещества от 10 до 40 масс. %.

4.4.4. Молекулярная масса от 10 тыс. до 1 млн. Катионный заряд расположен на вторичной цепи. Вязкость 40%-ного раствора от 40 до 20000 сПз.

4.4.5. В товарном продукте присутствует мономер ДАДМАХ.

4.5. Полиакриламиды (ПАА)

4.5.1. Неионные ПАА. Представляют собой акриламидные гомополимеры, получаемые путем полимеризации мономера акриламида:

CH2=CH > CH2-CH
C=O C=O
NH2 NH2
n
Акриламид Неионный полимер

4.5.1.1. Эмпирическая формула: -(C3H5NO)x-, где x - переменная в зависимости от продукта. Регистрационные номера CAS 25085-02-3; 9003-05-8; 9003-04-7.

4.5.1.2. Производится в виде гранул или порошка. Молекулярная масса 1 - 20 млн. Плотность заряда нулевая, т.е. полимер не имеет ни положительного, ни отрицательного электрического заряда.

4.5.1.3. В товарном продукте содержится мономер акриламид.

4.5.2. Анионные ПАА. Эти флокулянты получаются путем сополимеризации мономеров акриламида и акрилата натрия в различных пропорциях:

CH2=CH+CH2+NaOH > CH2 CH CH2 CH
C=O C=O C=O C=O
- +
NH2 OH NH2 ONa
n m
Акриламид Акриловая кислота Анионный полимер

4.5.2.1. Эмпирическая формула: -(C3H5NO)x(-C3H3O2A)y, где: A - положительный ион; x и y - переменные в зависимости от продукта. Регистрационные номера CAS 25085-02-3; 9003-05-8; 9003-04-7.

4.5.2.2. Производится в виде геля, гранул или порошка. Молекулярная масса 1 - 20 млн. Имеет отрицательный заряд с плотностью от 1 до 50%.

4.5.2.3. В товарном продукте содержится мономер акриламид.

4.5.2. Катионные ПАА. Эти реагенты получают путем сополимеризации акриламида и катионного акрилового мономера. Наиболее часто для этой цели используются следующие катионные мономеры:

- (2-акриламидоэтил)N-метил,N-диэтиламмоний метилсульфат;

- (2-акриламидоэтил)N-метил,N-диэтиламмоний хлорид;

- (2-акриламидоэтил)триметиламмоний хлорид;

- (2-акриламидоэтил)триметиламмоний метилсульфат;

- (2-метакриламидоэтил)триметиламмоний хлорид;

- (2-метакриламидоэтил)триметиламмоний метилсульфат;

- (2-метакриламидпропил)триметиламмоний хлорид;

- (3-акриламидпропил)триметиламмоний метилсульфат.

Типичная структура катионного ПАА представлена ниже:

CH2 CH CH2 CH
C=O C=O
-
NH2 O CH3 Cl
n +
CH2 CH2 N CH3
CH3
m

4.5.2.4. Эмпирическая формула: -(C3H5NO)x-(CaHbNcOdA)y-, где: A - отрицательный ион; x и y - переменные в зависимости от катионного мономера. Регистрационные номера CAS 69418-26-4; 26006-22-4; 35429-19-7; 25568-39-2; 60162-07-4; 51410-72-1; 52285-95-7; 68227-15-6; 55216-72-3; 26796-75-8; 45021-77-0.

4.5.2.5. Производится в виде гранул или порошка. Молекулярная масса 3 - 15 млн. Имеет положительный заряд, плотность которого от > 0 до < 15%.

4.5.2.6. В товарном продукте содержится мономер акриламид.

5. Гигиенические и технологические критерии качества синтетических полиэлектролитов, требования к их применению в процессах очистки питьевой воды

5.1. Основными критериями качества полимерных реагентов являются:

- химическая природа полимера и мономера;

- молекулярная масса (низкая 1 - 3 млн.; средняя 3 - 10 млн.; высокая более 10 млн.);

- природа заряда (неионные, анионные, катионные, амфотерные);

- величина (плотность) заряда (низкая 1 - 10%, средняя 10 - 40%, высокая 40 - 80%, очень высокая 80 - 100%);

- вязкость, которая определяется молекулярной массой и зарядом;

- физическая форма полимера (эмульсия, раствор, гель, порошок, гранулы);

- стабильность (при хранении; влиянии температуры, pH, УФ, хлорирования и озонирования);

- способность к трансформации, биотрансформации и биодеградации;

- присутствие мономеров и примесей в опасных концентрациях;

- токсичность и опасность.

5.2. Синтетические полиэлектролиты являются стабильными соединениями и сохраняют свои свойства в течение нескольких месяцев. В растворе при внешнем химическом, механическом и микробиологическом воздействии полимеры быстро подвергаются деградации:

5.2.1. Химическая деградация в основном происходит в результате гидролиза, скорость которого зависит от pH, химической природы и ионной формы полимера:

- неионные полиакриламиды стабильны при pH 1 - 12, анионные - 4 - 12, катионные - 4 - 6. ПолиЭПИ-ДМА и полиДАДМАХ стабильны при pH 1 - 14;

- в растворе (1 г/л) анионные полимеры стабильны в течение примерно 2-х суток, а катионные - 4-х часов.

5.2.2. Основными факторами, которые способны привести к деградации полимера, являются:

- свободные радикалы, которые вызывают разрыв полимерной цепочки, за счет чего быстро снижается молекулярная масса полиэлектролита;

- двух- и трехвалентные катионы;

- анаэробные и аэробные бактерии, которые образуют с полимером преципитаты;

- УФ-радиация, под действием которой разрываются полимерные цепочки и формируются низкомолекулярные продукты, которые легко подвергаются биодеградации. Кроме того, УФ-воздействие сопровождается образованием свободных радикалов в воде.

5.3. Синтетические полиэлектролиты характеризуются, как правило, низкой токсичностью и опасностью при энтеральном поступлении в организм. При этом:

- с повышением молекулярной массы полимера снижается его токсичность;

- с увеличением заряда повышается биологическая активность полиэлектролита, причем катионные реагенты оказывают более выраженное действие на организм, чем анионные;

- потенциальная опасность полиэлектролита определяется содержанием в товарном продукте мономеров и примесей, вызывающих отдаленные последствия при действии на организм.

5.4. Полиамины (полиЭПИ-ДМА)

5.4.1. Реагенты на основе эпихлоргидриндиметиламина производят под различными торговыми наименованиями более 60 компаний мира. В частности, SNF Floerger (серия Флокват), Cytec Industries B.V. (серия Суперфлок, ранее Магнифлок), Nalco (серия Налколайт), Callaway (серия Джайфлок) и т.д.

5.4.2. ПолиЭПИ-ДМА используется в качестве реагента для очистки питьевой воды свыше 30 лет. В течение этого времени не было сообщений о неблагоприятных последствиях воздействия реагента на рабочих местах или при потреблении питьевой воды.

5.4.3. В товарном продукте обнаруживаются вещества, которые используются при синтезе полимера или появляются в результате гидролиза. Перечень потенциальных загрязняющих компонентов в полимере и их ожидаемые концентрации в воде представлены в табл. 5.4.3.1.

Таблица 5.4.3.1

СОСТАВ ПОЛИЭПИ-ДМА И ВОЗМОЖНЫЕ МАКСИМАЛЬНЫЕ КОНЦЕНТРАЦИИ ПРИМЕСЕЙ

Химические соединения Макс. концентр. в полимере, мг/кг Макс. концентр., вводимая в воду, мг/л Макс. концентр. в питьевой воде, мг/л
ЭПИ-ДМА 5,0 < 0,05
Эпихлоргидрин 20 0,0001 0,0001
Диметиламин 2000 0,01 0,01
1,3-дихлор-2-пропанол 1000 0,005 0,005
2,3-дихлор-1-пропанол 500 0,0025 0,0025

5.4.4. ПолиЭПИ-ДМА является малотоксичным соединением при длительном пероральном поступлении в организм, не обладает генотоксичностью in vitro и in vivo.

5.4.5. Остаточные концентрации полимера в питьевой воде у потребителя возможны в основном на уровне нулевых, а для примесей - следовых, при условии соблюдения регламента использования реагента, представленного ниже (п. 5.4.7).

5.4.6. Примеси, входящие в состав реагента, способны оказывать отдаленное воздействие на организм (эпихлоргидрин - канцерогенное; 1,3-дихлорпропанол - мутагенное), однако в концентрациях, в десятки раз превышающих их реальное содержание в воде. Основные критерии для оценки риска здоровью населения полиЭПИ-ДМА и примесей, содержащихся в нем, представлены в табл. 5.4.6.1.

Таблица 5.4.6.1

КРИТЕРИИ ДЛЯ ОЦЕНКИ РИСКА ПОЛИЭПИ-ДМА И ПРИМЕСЕЙ, ВХОДЯЩИХ В ЕГО СОСТАВ

Соединение ЭПИ-ДМА Эпихлоргидрин Диметиламин 1,3-дихлор-2пропанол 2,3-дихлор-1пропанол
Класс опасности <1> 4 2 2 3
ПДК, мг/л 7,0 <2> 0,01 <1>
(0,00001) <3>
0,1 <1> 1,0 <1>
NOAEL <4>, мг/кг/день 2000 <5> 0,8 1,0 10,0
RfD <4>, мг/кг/день 2,0 <5> 0,004 0,001 0,01
MAL, мг/л <4>:
- дети 7 <5> 0,04 0,01 0,1
- взрослые 20 <5> 0,14 0,035 0,35


<1> СанПиН 2.1.4.559-96.

<2> МНК.

<3> Норматив ЕС.

<4> Данные NSF (Национальный санитарный фонд США).

<5> Для канцерогенов указанные параметры не рассчитываются.

5.4.7. Гигиенические и технологические требования к составу и условиям применения полиЭПИ-ДМА.

5.4.7.1. Не должно быть нерастворимого геля или посторонних включений.

5.4.7.2. pH должен быть в диапазоне 4 - 7.

5.4.7.3. Максимальная доза - не более 5 мг/л активного вещества.

5.4.7.4. Примеси / побочные продукты мг/кг активного вещества не более:

- эпихлоргидрин - 20;

- 1,3-дихлор-2-пропанол - 1000;

- 2,3-дихлор-1-пропанол - 500.

5.5. ПолиДАДМАХ

5.5.1. Реагенты на основе диаллилдиметиламмоний хлорида в течение 35 лет применяются для очистки питьевой воды на многих водопроводах мира, в т.ч. России. ПолиДАДМАХи производят под различными торговыми наименованиями более 260 компаний мира. В частности, SNF Floerger (Флопам серии ФЛ 45), Cytec Industries B.V. (Суперфлок С 591, 592, 597), Nalco (Налколайт 8102, 8103), Stockhausen (Праестол 186 - 189) и т.д. В России аналогичные катионные реагенты выпускаются под маркой ВПК-402.

5.5.2. ПолиДАДМАХ является гомополимером диаллилдиметиламмоний хлорида. Теоретически в составе исходного мономера могут содержаться следовые концентрации аллилхлорида, аллилового спирта, диаллилового эфира и гексенала. Однако при синтезе мономера используется избыток от стехиометрии аллилхлорида к диметиламину, поэтому последний становится лимитирующим реагентом. В результате реакции в таких условиях образуется практически 100-процентный мономер, не содержащий примесей.

5.5.3. ПолиДАДМАХ применяется для очистки питьевой воды в качестве коагулянта, реже флокулянта, в дозах 1 - 3 мг/л, при этом 99,9% полимера устраняется в процессе отстаивания и фильтрации воды. Состав товарного продукта, состоящего на 93,5% из полиДАДМАХа (обычно концентрация активного вещества составляет 10 - 40%), представлен в табл. 5.5.3.1.

Таблица 5.5.3.1

СОСТАВ ПОЛИДАДМАХ И ВОЗМОЖНЫЕ МАКСИМАЛЬНЫЕ КОНЦЕНТРАЦИИ ПРИМЕСЕЙ

Химические соединения Концентрация, % Макс. концентр., вводимая в воду, мг/л Макс. концентр. в питьевой воде, мг/л
ПолиДАДМАХ 93,5 10,0 < 0,01
ДАДМАХ < 0,5 < 0,05 < 0,05
Натрия хлорид 5,0 0,5 0,5
Аммония сульфат 1,0 0,1 0,1

5.5.4. ПолиДАДМАХ и мономер ДАДМАХ являются малотоксичными соединениями, не обладающими отдаленным действием на теплокровный организм при пероральном поступлении. Основные критерии для оценки риска здоровью населения этих соединений представлены в табл. 5.5.4.1.

Таблица 5.5.4.1

КРИТЕРИИ ДЛЯ ОЦЕНКИ РИСКА ПОЛИДАДМАХ И ЕГО МОНОМЕРА

Соединение ДАДМАХ ПолиДАДМАХ
Класс опасности <*> 4
ПДК в воде, мг/л <*> 0,1
NOAEL, мг/кг/сутки <**> 5,0 200,0
RfD, мг/кг/сутки <**> 0,005 0,20
MAL, мг/л <**>:
- дети 0,05 2,0
- взрослые 0,175 7,0


<*> СанПин 2.1.4.559-96.

<**> Данные NSF.

5.5.5. Реагенты полиДАДМАХ разрешены для применения в технологиях очистки питьевой воды Европейским комитетом по стандартизации (максимально допустимая доза 10 мг/л) и Национальным санитарным фондом США (максимально допустимая доза 19 мг/л).

5.5.6. Гигиенические и технологические требования к составу и условиям применения полиДАДМАХ.

5.5.6.1. Отсутствие нерастворимого геля или посторонних включений.

5.5.6.2. pH должна быть в диапазоне 4 - 7.

5.5.6.3. Максимально допустимая доза 10 мг/л.

5.5.6.4. Содержание мономера (ДАДМАХ) в товарном продукте не более 5 г/кг.

5.6. Полиакриламиды (ПАА)

5.6.1. ПАА применяются с конца 50-х годов для очистки питьевой воды на водопроводах большинства стран мира. В РФ практически на всех водопроводных станциях ПАА используются в качестве флокулянтов. В настоящее время ПАА (сотни торговых наименований) производятся многими компаниями развитых стран.

5.6.2. Неионный и анионные полиакриламиды (НАПАА) в настоящее время применяются в дозах от 0,1 до 1,0 мг/л в качестве флокулянтов для очистки питьевой воды. При соблюдении технологии синтеза в товарном продукте содержатся только акриламид и соли акриловой кислоты. Перечень потенциальных загрязняющих компонентов в полимере и их возможные концентрации в воде представлены в табл. 5.6.2.1.

Таблица 5.6.2.1

СОСТАВ НАПАА И ВОЗМОЖНЫЕ МАКСИМАЛЬНЫЕ КОНЦЕНТРАЦИИ ПРИМЕСЕЙ

Химические соединения Макс. концентр. в полимере, мг/кг Макс. концентр., вводимая в воду, мг/л Макс. концентр. в питьевой воде, мг/л
НАПАА 0,4 < 0,01
Акриламид < 250 < 0,0001 < 0,0001
Акриловая кислота 9500 < 0,004 < 0,004

5.6.3. Акриламид в твердом виде является высокостабильным при комнатной температуре, но он легко и быстро полимеризуется при повышении температуры до точки плавления, а также под действием УФ и окислителей (хлор, озон и т.п.). При энтеральном поступлении акриламид легко всасывается в желудочно-кишечном тракте, обладает нейротоксическим действием, нарушает репродуктивную функцию, обладает мутагенным и канцерогенным действием. В этой связи согласно Директиве 98/83/ЕС содержание акриламида в питьевой воде не должно превышать 0,1 мкг/л.

5.6.4. НАПАА являются малотоксичными соединениями и не обладают отдаленными последствиями действия на организм. При использовании НАПАА для очистки питьевой воды в оптимальных дозах акриловая кислота также не представляет опасности для потребителей. Основные критерии для оценки риска этих соединений здоровью населения представлены в табл. 5.6.4.1.

Таблица 5.6.4.1

КРИТЕРИИ ОЦЕНКИ РИСКА НАПАА И ПРИМЕСЕЙ, ВХОДЯЩИХ В ЕГО СОСТАВ

Соединение НАПАА Акриламид Акриловая кислота
Класс опасности <1> 2 2 2
ПДК в воде, мг/л 2,0 <1> 0,01 <1>
(0,0001) <2>
0,5 <1>
NOAEL, мг/кг/сутки <3> 2000 <4> 83
RfD, мг/кг/сутки <3> 20 <4> 0,083
MAL, мг/л <3>:
- дети 200 <4> 0,28
- взрослые 700 <4> 0,97


<1> СанПиН 2.1.4.559-96.

<2> Норматив ЕС.

<3> Данные NSF.

<4> Для канцерогенов указанные параметры не рассчитываются.

5.6.5. Гигиенические и технологические требования к составу и условиям применения НАПАА.

5.6.5.1. Отсутствие видимых посторонних включений.

5.6.5.2. Максимально допустимая доза 0,4 мг/л (по активному веществу).

5.6.5.3. Содержание акриламида в товарном продукте не более 250 мг/кг.

5.7. Катионные полиакриламиды (КПАА)

5.7.1. КПАА являются продуктом сополимеризации акриламида и различных акриловых мономеров, чаще всего ди- и триметиламиноэтилакрилата метилхлорида (Д- и ТМАЭА MX). Наряду с НАПАА относятся к наиболее известной группе синтетических полиэлектролитов, которые в течение более 30 лет эффективно применяются в качестве флокулянтов при очистке питьевой воды на водопроводах большинства стран мира. В России также длительное время применяется аналогичный катионный полиакриламидный реагент марки КФ-6.

5.7.2. КПАА для очистки воды применяются в качестве флокулянтов в дозах 0,1 - 0,2 мг/л. При соблюдении технологии синтеза в твердом товарном продукте содержатся только акриламид и акриловый мономер. Перечень потенциальных загрязнителей в полимере и их ожидаемые концентрации в воде представлены в табл. 5.7.2.1.

Таблица 5.7.2.1

СОСТАВ КПАА И ОЖИДАЕМЫЕ МАКСИМАЛЬНЫЕ КОНЦЕНТРАЦИИ ПРИМЕСЕЙ

Химические соединения Макс. концентр. в полимере, мг/кг Макс. концентр., вводимая в воду, мг/л Макс. концентр. в питьевой воде, мг/л
КПАА 0,4 < 0,01
Акриламид < 250 < 0,0001 < 0,0001
ДМАЭА MX < 5000 < 0,002 < 0,002

5.7.3. КПАА и используемые при их синтезе акриловые мономеры, в частности ДМАЭА MX, являются малотоксичными соединениями и не обладают отдаленными последствиями действия на организм. Применение КПАА для очистки питьевой воды в оптимальных дозах не представляет опасности для потребителей. Основные критерии для оценки риска КПАА здоровью населения представлены в табл. 5.7.3.1.

Таблица 5.7.3.1

КРИТЕРИИ ДЛЯ ОЦЕНКИ РИСКА КПАА И ЕГО МОНОМЕРА

Соединение КПАА Акриламид
Класс опасности <1> 2 2
ПДК в воде, мг/л 2,0 <1> 0,01 <1> (0,0001) <2>
NOAEL, мг/кг/сутки <3> 500 <4>
RfD, мг/кг/сутки <3> 5,0 <4>
MAL, мг/л <3>:
- дети 50 <4>
- взрослые 180 <4>


<1> СанПиН 2.1.4.559-96.

<2> Норматив ЕС.

<3> Данные NSF.

<4> Для канцерогенов указанные параметры не рассчитываются.

5.7.4. Гигиенические и технологические требования к составу и условиям применения КПАА

5.7.4.1. Отсутствие видимых посторонних включений.

5.7.4.2. Максимально допустимая доза 0,4 мг/л (по активному веществу).

5.7.4.3. Содержание акриламида в товарном продукте не более 250 мг/кг.

6. Производственный контроль использования синтетических полиэлектролитов

6.1. В соответствии с действующим законодательством производственный лабораторный контроль выполняется силами предприятий и учреждений, в ведении которых находятся сооружения по очистке питьевой воды. При отсутствии производственной лаборатории или возможностей для проведения полноценного контроля исследования осуществляются на договорной основе аккредитованными в установленном порядке лабораториями.

6.2. Программа производственного контроля должна быть согласована с территориальными центрами госсанэпиднадзора.

6.3. При использовании синтетических полиэлектролитов для очистки питьевой воды необходимо контролировать:

- качество поступающих реагентов;

- физико-химические показатели поступающей воды;

- выбор оптимальной дозы полимера;

- соблюдение технологических правил, режимов применения реагентов, установленных в технических условиях и инструкциях;

- эффективность очистки воды;

- соблюдение мер по обеспечению безопасности труда персонала.

6.3.1. Качество полиэлектролитов подтверждается:

- протоколом анализа от производителя (Прилож. 1);

- паспортом безопасности синтетического полиэлектролита (Прилож. 2);

- санитарно-эпидемиологическим заключением, выданным в установленном порядке;

- результатами анализов проб, отобранных из каждой новой партии реагентов на соответствие требованиям, изложенным в п. п. 5.4.7; 5.5.6; 5.6.5; 5.7.4.

6.3.2. Оптимальная доза полимера устанавливается методом пробного коагулирования / флокулирования ежесуточно с учетом физико-химических показателей обрабатываемой воды (pH, мутность, цветность).

6.3.3. Оценка эффективности очистки воды полимерами проводится по органолептическим показателям (запах, цветность, мутность) в соответствии с требованиями СанПиН 2.1.4.559-96.

7. Государственный санитарно-эпидемиологический надзор за использованием синтетических полиэлектролитов для очистки питьевой воды

7.1. Государственный санитарно-эпидемиологический надзор включает:

- согласование технологии очистки воды синтетическими полиэлектролитами и программы производственного контроля (показатели, кратность и точки отбора проб, методы определения);

- оценку организации и результатов производственного контроля;

- оценку соблюдения гигиенических требований к условиям труда обслуживающего персонала.

7.2. Согласование технологии очистки воды осуществляется на основании:

- сведений, подтверждающих качество синтетических полиэлектролитов (санитарно-эпидемиологические заключения на производство, нормативно-техническую документацию и продукцию; протоколы анализа и паспорта безопасности на синтетические полиэлектролиты);

- органолептических и санитарно-химических показателей воды, поступающей на очистку;

- параметров физико-химической очистки (дозы и точки ввода реагентов, время контакта) и характеристик оборудования для ее осуществления.

7.3. Оценка организации и результатов производственного лабораторного контроля проводится по журналам оценки качества полиэлектролитов и эффективности их использования, соблюдению графика отбора проб и выбора оптимальной дозы реагентов.

7.4. При контроле безопасности труда обслуживающего персонала проверяется:

- ведение журнала учета индивидуального инструктажа по технике безопасности и производственной санитарии лиц, работающих с синтетическими полиэлектролитами;

- соблюдение требований правил безопасности, указанных в паспорте синтетического полиэлектролита (Прилож. 1) и инструкциях по применению реагентов;

- правильность использования и хранения реагентов;

- ведение журнала по результатам определения концентраций мономеров в воздухе рабочей зоны помещений реагентного хозяйства и складов хранения синтетических полиэлектролитов;

- наличие аптечки скорой помощи;

- правильность прохождения предварительных и периодических осмотров работающих.

7.5. Государственный санитарно-эпидемиологический надзор за использованием синтетических полиэлектролитов осуществляется в сроки, установленные территориальными органами государственной санитарно-эпидемиологической службы, но не реже одного раза в квартал.