"САНИТАРНО - ЭПИДЕМИОЛОГИЧЕСКИЙ НАДЗОР ЗА ИСПОЛЬЗОВАНИЕМ СИНТЕТИЧЕСКИХ ПОЛИЭЛЕКТРОЛИТОВ В ПРАКТИКЕ ПИТЬЕВОГО ВОДОСНАБЖЕНИЯ. МЕТОДИЧЕСКИЕ УКАЗАНИЯ. МУ 2.1.4.1060-01" (утв. Главным государственным санитарным врачом РФ 18.07.2001)
5. Гигиенические и технологические критерии качества синтетических полиэлектролитов, требования к их применению в процессах очистки питьевой воды
5.1. Основными критериями качества полимерных реагентов являются:
- химическая природа полимера и мономера;
- молекулярная масса (низкая 1 - 3 млн.; средняя 3 - 10 млн.; высокая более 10 млн.);
- природа заряда (неионные, анионные, катионные, амфотерные);
- величина (плотность) заряда (низкая 1 - 10%, средняя 10 - 40%, высокая 40 - 80%, очень высокая 80 - 100%);
- вязкость, которая определяется молекулярной массой и зарядом;
- физическая форма полимера (эмульсия, раствор, гель, порошок, гранулы);
- стабильность (при хранении; влиянии температуры, pH, УФ, хлорирования и озонирования);
- способность к трансформации, биотрансформации и биодеградации;
- присутствие мономеров и примесей в опасных концентрациях;
- токсичность и опасность.
5.2. Синтетические полиэлектролиты являются стабильными соединениями и сохраняют свои свойства в течение нескольких месяцев. В растворе при внешнем химическом, механическом и микробиологическом воздействии полимеры быстро подвергаются деградации:
5.2.1. Химическая деградация в основном происходит в результате гидролиза, скорость которого зависит от pH, химической природы и ионной формы полимера:
- неионные полиакриламиды стабильны при pH 1 - 12, анионные - 4 - 12, катионные - 4 - 6. ПолиЭПИ-ДМА и полиДАДМАХ стабильны при pH 1 - 14;
- в растворе (1 г/л) анионные полимеры стабильны в течение примерно 2-х суток, а катионные - 4-х часов.
5.2.2. Основными факторами, которые способны привести к деградации полимера, являются:
- свободные радикалы, которые вызывают разрыв полимерной цепочки, за счет чего быстро снижается молекулярная масса полиэлектролита;
- двух- и трехвалентные катионы;
- анаэробные и аэробные бактерии, которые образуют с полимером преципитаты;
- УФ-радиация, под действием которой разрываются полимерные цепочки и формируются низкомолекулярные продукты, которые легко подвергаются биодеградации. Кроме того, УФ-воздействие сопровождается образованием свободных радикалов в воде.
5.3. Синтетические полиэлектролиты характеризуются, как правило, низкой токсичностью и опасностью при энтеральном поступлении в организм. При этом:
- с повышением молекулярной массы полимера снижается его токсичность;
- с увеличением заряда повышается биологическая активность полиэлектролита, причем катионные реагенты оказывают более выраженное действие на организм, чем анионные;
- потенциальная опасность полиэлектролита определяется содержанием в товарном продукте мономеров и примесей, вызывающих отдаленные последствия при действии на организм.
5.4. Полиамины (полиЭПИ-ДМА)
5.4.1. Реагенты на основе эпихлоргидриндиметиламина производят под различными торговыми наименованиями более 60 компаний мира. В частности, SNF Floerger (серия Флокват), Cytec Industries B.V. (серия Суперфлок, ранее Магнифлок), Nalco (серия Налколайт), Callaway (серия Джайфлок) и т.д.
5.4.2. ПолиЭПИ-ДМА используется в качестве реагента для очистки питьевой воды свыше 30 лет. В течение этого времени не было сообщений о неблагоприятных последствиях воздействия реагента на рабочих местах или при потреблении питьевой воды.
5.4.3. В товарном продукте обнаруживаются вещества, которые используются при синтезе полимера или появляются в результате гидролиза. Перечень потенциальных загрязняющих компонентов в полимере и их ожидаемые концентрации в воде представлены в табл. 5.4.3.1.
Таблица 5.4.3.1
СОСТАВ ПОЛИЭПИ-ДМА И ВОЗМОЖНЫЕ МАКСИМАЛЬНЫЕ КОНЦЕНТРАЦИИ ПРИМЕСЕЙ
5.4.4. ПолиЭПИ-ДМА является малотоксичным соединением при длительном пероральном поступлении в организм, не обладает генотоксичностью in vitro и in vivo.
5.4.5. Остаточные концентрации полимера в питьевой воде у потребителя возможны в основном на уровне нулевых, а для примесей - следовых, при условии соблюдения регламента использования реагента, представленного ниже (п. 5.4.7).
5.4.6. Примеси, входящие в состав реагента, способны оказывать отдаленное воздействие на организм (эпихлоргидрин - канцерогенное; 1,3-дихлорпропанол - мутагенное), однако в концентрациях, в десятки раз превышающих их реальное содержание в воде. Основные критерии для оценки риска здоровью населения полиЭПИ-ДМА и примесей, содержащихся в нем, представлены в табл. 5.4.6.1.
Таблица 5.4.6.1
КРИТЕРИИ ДЛЯ ОЦЕНКИ РИСКА ПОЛИЭПИ-ДМА И ПРИМЕСЕЙ, ВХОДЯЩИХ В ЕГО СОСТАВ
<2> МНК.
<3> Норматив ЕС.
<4> Данные NSF (Национальный санитарный фонд США).
<5> Для канцерогенов указанные параметры не рассчитываются.
5.4.7. Гигиенические и технологические требования к составу и условиям применения полиЭПИ-ДМА.
5.4.7.1. Не должно быть нерастворимого геля или посторонних включений.
5.4.7.2. pH должен быть в диапазоне 4 - 7.
5.4.7.3. Максимальная доза - не более 5 мг/л активного вещества.
5.4.7.4. Примеси / побочные продукты мг/кг активного вещества не более:
- эпихлоргидрин - 20;
- 1,3-дихлор-2-пропанол - 1000;
- 2,3-дихлор-1-пропанол - 500.
5.5. ПолиДАДМАХ
5.5.1. Реагенты на основе диаллилдиметиламмоний хлорида в течение 35 лет применяются для очистки питьевой воды на многих водопроводах мира, в т.ч. России. ПолиДАДМАХи производят под различными торговыми наименованиями более 260 компаний мира. В частности, SNF Floerger (Флопам серии ФЛ 45), Cytec Industries B.V. (Суперфлок С 591, 592, 597), Nalco (Налколайт 8102, 8103), Stockhausen (Праестол 186 - 189) и т.д. В России аналогичные катионные реагенты выпускаются под маркой ВПК-402.
5.5.2. ПолиДАДМАХ является гомополимером диаллилдиметиламмоний хлорида. Теоретически в составе исходного мономера могут содержаться следовые концентрации аллилхлорида, аллилового спирта, диаллилового эфира и гексенала. Однако при синтезе мономера используется избыток от стехиометрии аллилхлорида к диметиламину, поэтому последний становится лимитирующим реагентом. В результате реакции в таких условиях образуется практически 100-процентный мономер, не содержащий примесей.
5.5.3. ПолиДАДМАХ применяется для очистки питьевой воды в качестве коагулянта, реже флокулянта, в дозах 1 - 3 мг/л, при этом 99,9% полимера устраняется в процессе отстаивания и фильтрации воды. Состав товарного продукта, состоящего на 93,5% из полиДАДМАХа (обычно концентрация активного вещества составляет 10 - 40%), представлен в табл. 5.5.3.1.
СОСТАВ ПОЛИДАДМАХ И ВОЗМОЖНЫЕ МАКСИМАЛЬНЫЕ КОНЦЕНТРАЦИИ ПРИМЕСЕЙ
5.5.4. ПолиДАДМАХ и мономер ДАДМАХ являются малотоксичными соединениями, не обладающими отдаленным действием на теплокровный организм при пероральном поступлении. Основные критерии для оценки риска здоровью населения этих соединений представлены в табл. 5.5.4.1.
КРИТЕРИИ ДЛЯ ОЦЕНКИ РИСКА ПОЛИДАДМАХ И ЕГО МОНОМЕРА
| Соединение | ДАДМАХ | ПолиДАДМАХ |
| Класс опасности <*> | 4 | |
| ПДК в воде, мг/л <*> | 0,1 | |
| NOAEL, мг/кг/сутки <**> | 5,0 | 200,0 |
| RfD, мг/кг/сутки <**> | 0,005 | 0,20 |
| MAL, мг/л <**>: | ||
| - дети | 0,05 | 2,0 |
| - взрослые | 0,175 | 7,0 |
<*> СанПин 2.1.4.559-96.
<**> Данные NSF.
5.5.5. Реагенты полиДАДМАХ разрешены для применения в технологиях очистки питьевой воды Европейским комитетом по стандартизации (максимально допустимая доза 10 мг/л) и Национальным санитарным фондом США (максимально допустимая доза 19 мг/л).
5.5.6. Гигиенические и технологические требования к составу и условиям применения полиДАДМАХ.
5.5.6.1. Отсутствие нерастворимого геля или посторонних включений.
5.5.6.2. pH должна быть в диапазоне 4 - 7.
5.5.6.3. Максимально допустимая доза 10 мг/л.
5.5.6.4. Содержание мономера (ДАДМАХ) в товарном продукте не более 5 г/кг.
5.6. Полиакриламиды (ПАА)
5.6.1. ПАА применяются с конца 50-х годов для очистки питьевой воды на водопроводах большинства стран мира. В РФ практически на всех водопроводных станциях ПАА используются в качестве флокулянтов. В настоящее время ПАА (сотни торговых наименований) производятся многими компаниями развитых стран.
5.6.2. Неионный и анионные полиакриламиды (НАПАА) в настоящее время применяются в дозах от 0,1 до 1,0 мг/л в качестве флокулянтов для очистки питьевой воды. При соблюдении технологии синтеза в товарном продукте содержатся только акриламид и соли акриловой кислоты. Перечень потенциальных загрязняющих компонентов в полимере и их возможные концентрации в воде представлены в табл. 5.6.2.1.
СОСТАВ НАПАА И ВОЗМОЖНЫЕ МАКСИМАЛЬНЫЕ КОНЦЕНТРАЦИИ ПРИМЕСЕЙ
5.6.3. Акриламид в твердом виде является высокостабильным при комнатной температуре, но он легко и быстро полимеризуется при повышении температуры до точки плавления, а также под действием УФ и окислителей (хлор, озон и т.п.). При энтеральном поступлении акриламид легко всасывается в желудочно-кишечном тракте, обладает нейротоксическим действием, нарушает репродуктивную функцию, обладает мутагенным и канцерогенным действием. В этой связи согласно Директиве 98/83/ЕС содержание акриламида в питьевой воде не должно превышать 0,1 мкг/л.
5.6.4. НАПАА являются малотоксичными соединениями и не обладают отдаленными последствиями действия на организм. При использовании НАПАА для очистки питьевой воды в оптимальных дозах акриловая кислота также не представляет опасности для потребителей. Основные критерии для оценки риска этих соединений здоровью населения представлены в табл. 5.6.4.1.
КРИТЕРИИ ОЦЕНКИ РИСКА НАПАА И ПРИМЕСЕЙ, ВХОДЯЩИХ В ЕГО СОСТАВ
<1> СанПиН 2.1.4.559-96.
<3> Данные NSF.
<4> Для канцерогенов указанные параметры не рассчитываются.
5.6.5. Гигиенические и технологические требования к составу и условиям применения НАПАА.
5.6.5.1. Отсутствие видимых посторонних включений.
5.6.5.2. Максимально допустимая доза 0,4 мг/л (по активному веществу).
5.6.5.3. Содержание акриламида в товарном продукте не более 250 мг/кг.
5.7. Катионные полиакриламиды (КПАА)
5.7.1. КПАА являются продуктом сополимеризации акриламида и различных акриловых мономеров, чаще всего ди- и триметиламиноэтилакрилата метилхлорида (Д- и ТМАЭА MX). Наряду с НАПАА относятся к наиболее известной группе синтетических полиэлектролитов, которые в течение более 30 лет эффективно применяются в качестве флокулянтов при очистке питьевой воды на водопроводах большинства стран мира. В России также длительное время применяется аналогичный катионный полиакриламидный реагент марки КФ-6.
5.7.2. КПАА для очистки воды применяются в качестве флокулянтов в дозах 0,1 - 0,2 мг/л. При соблюдении технологии синтеза в твердом товарном продукте содержатся только акриламид и акриловый мономер. Перечень потенциальных загрязнителей в полимере и их ожидаемые концентрации в воде представлены в табл. 5.7.2.1.
Таблица 5.7.2.1
СОСТАВ КПАА И ОЖИДАЕМЫЕ МАКСИМАЛЬНЫЕ КОНЦЕНТРАЦИИ ПРИМЕСЕЙ
5.7.3. КПАА и используемые при их синтезе акриловые мономеры, в частности ДМАЭА MX, являются малотоксичными соединениями и не обладают отдаленными последствиями действия на организм. Применение КПАА для очистки питьевой воды в оптимальных дозах не представляет опасности для потребителей. Основные критерии для оценки риска КПАА здоровью населения представлены в табл. 5.7.3.1.
Таблица 5.7.3.1
КРИТЕРИИ ДЛЯ ОЦЕНКИ РИСКА КПАА И ЕГО МОНОМЕРА
<1> СанПиН 2.1.4.559-96.
<2> Норматив ЕС.
<3> Данные NSF.
<4> Для канцерогенов указанные параметры не рассчитываются.
5.7.4. Гигиенические и технологические требования к составу и условиям применения КПАА
5.7.4.1. Отсутствие видимых посторонних включений.
5.7.4.2. Максимально допустимая доза 0,4 мг/л (по активному веществу).
5.7.4.3. Содержание акриламида в товарном продукте не более 250 мг/кг.