в базе 1 113 607 документа
Последнее обновление: 01.05.2024

Законодательная база Российской Федерации

Расширенный поиск Популярные запросы

8 (800) 350-23-61

Бесплатная горячая линия юридической помощи

Навигация
Федеральное законодательство
Содержание
  • Главная
  • "ПРОЕКТИРОВАНИЕ И УСТРОЙСТВО ОСНОВАНИЙ И ФУНДАМЕНТОВ ЗДАНИЙ И СООРУЖЕНИЙ. СП 50-101-2004" (утв. Госстроем РФ)
действует Редакция от 09.03.2004 Подробная информация
"ПРОЕКТИРОВАНИЕ И УСТРОЙСТВО ОСНОВАНИЙ И ФУНДАМЕНТОВ ЗДАНИЙ И СООРУЖЕНИЙ. СП 50-101-2004" (утв. Госстроем РФ)

6. Особенности проектирования оснований сооружений, возводимых на специфических грунтах и в особых условиях

6.1 Просадочные грунты

6.1.1 Основания, сложенные просадочными грунтами, должны проектироваться с учетом их особенности, заключающейся в том, что при повышении влажности выше определенного уровня происходит потеря прочности грунта и они дают дополнительные деформации - просадки - от внешней нагрузки и (или) собственного веса грунта.

6.1.2 При проектировании оснований, сложенных просадочными грунтами, следует учитывать возможность повышения их влажности за счет:

а) замачивания грунтов - сверху из внешних источников и (или) снизу при подъеме уровня подземных вод;

б) накопления влаги в грунте вследствие инфильтрации поверхностных вод и экранирования поверхности.

6.1.3 Просадочные грунты характеризуются относительной просадочностью _sl и начальным просадочным давлением p_sl. Указанные характеристики определяют в соответствии с 6.1.12 и 6.1.14.

Нормативные значения _sl и p_sl вычисляют как средние значения результатов их определений (ГОСТ 20522), а расчетные значения допускается принимать равными нормативным (_g = 1).

6.1.4 При проектировании оснований, сложенных просадочными грунтами, должны учитываться:

а) просадки от внешней нагрузки s_sl,p, происходящие в пределах верхней зоны просадки h_sl,p, измеряемой от подошвы фундамента до глубины, где суммарные вертикальные напряжения от внешней нагрузки и собственного веса грунта равны начальному просадочному давлению или сумма указанных напряжений минимальна (см. 6.1.15);

б) просадки от собственного веса грунта s_sl,g, происходящие в нижней зоне просадки h_sl,g, начиная с глубины, где суммарные вертикальные напряжения превышают начальное просадочное давление p_sl или сумма вертикальных напряжений от собственного веса грунта и внешней нагрузки минимальна, и до нижней границы просадочной толщи;

в) неравномерность просадки грунтов s_sl;

г) горизонтальные перемещения основания u_sl в пределах криволинейной части просадочной воронки при просадке грунтов от собственного веса;

д) потеря устойчивости откосов и склонов;

е) дополнительные нагрузки вследствие образования в грунтовой толще водных куполов.

Примечание - Просадку грунтов учитывают при относительной просадочности _sl > 0,01.

6.1.5 При определении просадок грунтов и их неравномерности следует учитывать: характер планировки территории (наличие выемок и срезки или насыпей и подсыпок, которые оказывают влияние на напряженное состояние грунтов основания, а также на вид и размер просадок); возможные виды, размеры и места расположения источников замачивания грунтов; конструктивные особенности сооружения, в частности наличие тоннелей, подвалов под частью сооружения и т.п.; дополнительные нагрузки на глубокие фундаменты, уплотненные и закрепленные массивы от сил негативного трения, возникающих при просадках грунтов от собственного веса.

Кроме того, необходимо учитывать, что при замачивании сверху больших площадей (ширина замачиваемой площади B_w равна или превышает толщину слоя просадочного грунта - просадочную толщу H_sl) и замачивании снизу за счет подъема уровня подземных вод полностью проявляется просадка от собственного веса s_sl,g, а при замачивании сверху малых площадей (B_w < H_sl проявляется лишь только часть ее s'_sl,g (см. 6.1.18).

Примечание - При определении неравномерности просадок грунтов следует учитывать возможные наиболее неблагоприятные виды и места расположения источников замачивания по отношению к рассчитываемому фундаменту или сооружению в целом.

6.1.6 Грунтовые условия площадок, сложенных просадочными грунтами, в зависимости от возможности проявления просадки грунтов от собственного веса подразделяют на два типа:

I тип - грунтовые условия, в которых возможна в основном просадка грунтов от внешней нагрузки, а просадка грунтов от собственного веса отсутствует или не превышает 5 см;

II тип - грунтовые условия, в которых помимо просадки грунтов от внешней нагрузки возможна их просадка от собственного веса и размер ее превышает 5 см.

6.1.7 Расчет оснований, сложенных просадочными грунтами, производят в соответствии с требованиями раздела 5.

При этом деформации основания определяют суммированием осадок и просадок. Осадки основания определяют без учета просадочных свойств грунтов исходя из деформационных характеристик грунтов при установившейся влажности, а просадки - в соответствии с требованиями 6.1.2-6.1.5.

Установившееся значение влажности принимают равным природной влажности w, если w w_p, и влажности на границе раскатывания w_p, если w < w_p.

Примечание - Следует также учитывать осадки подстилающих просадочную толщу грунтов, которые могут быть вызваны изменением напряженного состояния грунтового массива из-за нагрузок: от зданий и сооружений, грунтовых подушек, подсыпок при выполнении вертикальной планировки, а также от веса воды при водонасыщении просадочной толщи и т.п.

6.1.8 Расчетное сопротивление грунта основания R при возможном замачивании просадочных грунтов (6.1.2, а) принимают равным:

а) начальному просадочному давлению p_sl при устранении возможности просадки грунтов от внешней нагрузки путем снижения давления по подошве фундамента;

б) значению, вычисленному по формуле (5.5) с использованием расчетных значений прочностных характеристик (_II и с_II) в водонасыщенном состоянии.

При невозможности замачивания просадочных грунтов расчетное сопротивление грунта основания R определяют по формуле (5.5) с использованием прочностных характеристик этих грунтов при установившейся влажности (6.1.7).

При определении расчетного сопротивления грунта основания при возможности его замачивания до полного водонасыщения коэффициенты условий работы _c1 и _c2 принимают по таблице 5.2 как для глинистых грунтов с показателем текучести I_L > 0,5, а при невозможности замачивания - с показателем текучести I_L 0,5.

6.1.9 Предварительные размеры фундаментов сооружений I и II уровней ответственности, возводимых на просадочных грунтах, назначают исходя из расчетных сопротивлений основания R_0, принимаемых по таблице Д.4 приложения Д.

Указанными значениями R_0 допускается пользоваться также для назначения окончательных размеров фундаментов сооружений III уровня ответственности, в которых отсутствует мокрый процесс.

6.1.10 При устранении просадочных свойств грунтов уплотнением или закреплением необходимо обеспечить, чтобы полное давление на кровлю подстилающего неуплотненного или незакрепленного слоя не превышало начальное просадочное давление p_sl.

6.1.11 Просадку грунтов основания s_sl, см, при увеличении их влажности вследствие замачивания сверху больших площадей (см. 6.1.5), а также замачивания снизу при подъеме уровня подземных вод определяют по формуле

(6.1)

где _sl,i- относительная просадочность i-го слоя грунта, определяемая в соответствии с 6.1.12;

h_i - толщина i-го слоя, см;

k_sl,i - коэффициент, определяемый в соответствии с 6.1.13;

n - число слоев, на которое разбита зона просадки h_sl, принимаемое в соответствии с 6.1.17.

6.1.12 Относительную просадочность грунта _sl определяют на основе испытаний грунта в лабораторных условиях (ГОСТ 23161) по формуле

(6.2)

где h_n,p и h_sat,p - высота образца, см, соответственно природной влажности и после его полного водонасыщения (w = w_sat) при давлении р, кПа, равном вертикальному напряжению на рассматриваемой глубине от внешней нагрузки и собственного веса грунта р = _zp + _zg при определении просадки грунта в верхней зоне просадки; при определении просадки грунта в нижней зоне просадки также учитывают дополнительную нагрузку от сил негативного трения;

h_n,g - высота, см, того же образца природной влажности при р = _zg.

Значение _sl может быть определено также в полевых условиях по испытаниям грунта штампом с замачиванием (ГОСТ 20276).

6.1.13 Коэффициент k_sl,i, входящий в формулу (6.1), при b 12 м принимают равным единице для всех слоев грунта в пределах зоны просадки; при b 3 вычисляют по формуле

k_sl,i = 0,5 + 1,5(p - p_sl,i)/p_0, (6.3)

где р - среднее давление под подошвой фундамента, кПа;

p_sl,i - начальное просадочное давление грунта i-го слоя, кПа, определяемое в соответствии с 6.1.14;

р_0 - давление, равное 100 кПа.

При 3 м < b < 12 м k_sl,i определяют интерполяцией.

При определении просадки грунта от собственного веса следует принимать k_sl = 1 при H_sl 15 м и k_sl = 1,25 при H_sl 20 м, при промежуточных значениях H_sl коэффициент k_sl определяют интерполяцией.

6.1.14 За начальное просадочное давление p_sl принимают давление, соответствующее:

- при лабораторных испытаниях грунтов в компрессионных приборах (ГОСТ 23161) - давлению, при котором относительная просадочность e_sl равна 0,01;

- при полевых испытаниях штампами предварительно замоченных грунтов (ГОСТ 20276) - давлению, равному пределу пропорциональности на графике "нагрузка-осадка";

- при замачивании грунтов в опытных котлованах - вертикальному напряжению от собственного веса грунта на глубине, начиная с которой происходит просадка грунта от собственного веса.

6.1.15 Толщину зоны просадки грунта h_sl принимают равной (рисунок 6.1):

толщине верхней зоны просадочной толщи h_sl при определении просадки грунта от внешней нагрузки s_sl (6.1.4), при этом нижняя граница указанной зоны соответствует глубине, где _z = _zp + _zg = p_sl (рисунок 6.1 а, б) или глубине, где значение _z минимально, если _z,min > p_sl (рисунок 6.1, в);

толщине нижней зоны просадочной толщи h_sl,g при определении просадки грунта от собственного веса s_sl,g, (6.1.4 и 6.1.5), т.е. начиная с глубины z_g, где _z = _psl, или значение _z минимально, если _z,min > p_sl, и до нижней границы просадочной толщи.

6.1.16 При отсутствии опытных определений начального просадочного давления суммирование по формуле (6.1) производят до глубины, на которой относительная просадочность _sl от давления p_i равна 0,01.

6.1.17 Для расчета просадки грунта от нагрузки фундамента просадочную толщу разбивают на отдельные слои h_i в соответствии с литологическим разрезом и горизонтами определения _sl,i. При этом толщина слоев должна быть не более 2 м, а изменение суммарного напряжения в пределах каждого слоя не должно превышать 200 кПа. При расчете просадок по формуле (6.1) учитывают только слои грунта, относительная просадочность которых при фактическом напряжении _sl > 0,01. Слои, в которых _sl < 0,01, исключают из рассмотрения. Указанные требования относятся и к расчету максимальной просадки грунта от собственного веса по формуле (6.1).

6.1.18 Возможную просадку грунта от собственного веса s'_sl,g, см, при замачивании сверху малых площадей (ширина замачиваемой площади В_w меньше размера просадочной толщи H_sl) определяют по формуле

(6.4)

где s_sl,g - максимальное значение просадки грунта от собственного веса, см, определяемое в соответствии с 6.1.11.

а - просадка от собственного веса s_sl,g отсутствует (не превышает 5 см), возможна только просадка от внешней нагрузки s_sl,p в верхней зоне просадки hsl,p (I тип грунтовых условий); б, в, г - возможна просадка от собственного веса s_sl,g в нижней зоне просадки h_sl,g, начиная с глубины z_g (II тип грунтовых условий); б - верхняя и нижняя зоны просадки не сливаются, имеется нейтральная зона h_n; в - верхняя и нижняя зоны просадки сливаются; г) - просадка от внешней нагрузки отсутствует; 1 - вертикальные напряжения от собственного веса грунта _zg; 2 -суммарные вертикальные напряжения от внешней нагрузки и собственного веса грунта _z = _zp + _zg; 3 - изменение с глубиной начального просадочного давления p_sl; H_sl - толщина слоя просадочных грунтов (просадочная толща); d - глубина заложения фундамента

Рисунок 6.1 - Схемы к расчету просадок основания

6.1.19 При проектировании оснований, сложенных просадочными грунтами, в случае их возможного замачивания (6.1.2, а) должны предусматриваться мероприятия, исключающие или снижающие до допустимых пределов просадки оснований и (или) уменьшающие их влияние на эксплуатационную пригодность сооружений в соответствии с 6.1.21 и 6.1.22.

В случае невозможности замачивания основания в течение всего срока эксплуатации сооружения (с учетом его возможной реконструкции) просадочные свойства грунтов допускается не учитывать, однако в расчетах должны использоваться физико-механические характеристики грунтов, соответствующие установившейся влажности (см. 6.1.7).

6.1.20 Расчет просадки в грунтовых условиях I типа не производят, если в пределах всей просадочной толщи сумма вертикальных напряжений от внешней нагрузки и от собственного веса грунта не превышает начальное просадочное давление p_sl.

6.1.21 При возможности замачивания грунтов основания (см. 6.1.2) следует предусматривать одно из следующих мероприятий:

а) устранение просадочных свойств грунтов в пределах всей просадочной толщи (6.1.22);

б) прорезку просадочной толщи фундаментами, в том числе свайными и массивами из закрепленного грунта (6.1.23);

в) комплекс мероприятий, включающий частичное устранение просадочных свойств грунтов, водозащитные и конструктивные мероприятия (подраздел 5.8).

В грунтовых условиях II типа наряду с устранением просадочных свойств грунтов или прорезкой просадочной толщи глубокими фундаментами должны предусматриваться водозащитные мероприятия, а также соответствующая компоновка генплана.

Выбор мероприятий должен производиться с учетом типа грунтовых условий, вида возможного замачивания, расчетной просадки, взаимосвязи проектируемых сооружений с соседними объектами и коммуникациями в соответствии с требованиями 4.1.

6.1.22 Устранение просадочных свойств грунтов достигается:

а) в пределах верхней зоны просадки или ее части уплотнением тяжелыми трамбовками, устройством грунтовых подушек, вытрамбовыванием котлованов, в том числе с устройством уширения из жесткого материала (бетона, щебня, песчано-гравийной смеси), химическим или термическим закреплением;

б) в пределах всей просадочной толщи - глубинным уплотнением грунтовыми сваями, предварительным замачиванием грунтов основания, в том числе с глубинными взрывами, химическим или термическим закреплением.

6.1.23 При проектировании глубоких фундаментов следует учитывать:

в грунтовых условиях I типа - сопротивление грунта по боковой поверхности фундаментов;

в грунтовых условиях II типа - негативное трение грунта по боковой поверхности фундаментов, возникающее при просадке грунтов от собственного веса.

6.2 Набухающие грунты

6.2.1 Основания, сложенные набухающими грунтами, должны проектироваться с учетом способности таких грунтов при повышении влажности увеличиваться в объеме - набухать. При последующем понижении влажности у набухающих грунтов происходит обратный процесс - усадка.

Необходимо учитывать, что способностью набухать при увеличении влажности обладают некоторые виды шлаков (например, шлаки электроплавильных производств), а также обычные глинистые грунты, не набухающие при увеличении влажности, если они замачиваются химическими отходами производств (например, растворами серной кислоты).

Возможность набухания шлаков при их увлажнении и глинистых грунтов при замачивании химическими отходами производств устанавливают опытным путем в лабораторных или полевых условиях.

6.2.2 Набухающие грунты характеризуются относительным набуханием при заданном давлении _sw, давлением набухания p_sw, влажностью набухания w_sw, и относительной усадкой при высыхании _sh.

Указанные характеристики определяют в соответствии с 6.2.7, 6.2.10 и 6.2.16.

6.2.3 При проектировании оснований, сложенных набухающими грунтами, следует учитывать возможность:

- набухания грунтов за счет подъема уровня подземных вод или инфильтрации - увлажнения грунтов производственными или поверхностными водами;

- набухания грунтов за счет накопления влаги под сооружениями в ограниченной по глубине зоне вследствие нарушения природных условий испарения при застройке и асфальтировании территории (экранирование поверхности);

- набухания и усадки грунта в верхней части зоны аэрации - за счет изменения водно-теплового режима (сезонных климатических факторов);

- усадки за счет высыхания от воздействия тепловых источников.

Примечание - При проектировании заглубленных частей сооружений необходимо учитывать горизонтальное давление, возникающее при набухании и усадке грунтов.

6.2.4 Горизонтальное давление p_h, кПа, определяют по формуле

p_h = _c k_sw p_max,h (6.5)

где _c- коэффициент условий работы, равный 0,85;

k_sw - коэффициент, зависящий от интенсивности набухания и принимаемый по таблице 6.1;

p_max,h - максимальное горизонтальное давление, определяемое в лабораторных условиях, кПа.

Таблица 6.1

Интенсивность набухания за 1 сут, % 0,1 0,2 0,3 0,4 0,5 0,6 0,7
k_sw 1,40 1,25 1,12 1,05 1,02 1,01 1,00

6.2.5 Основания, сложенные набухающими грунтами, должны рассчитываться в соответствии с требованиями раздела 5.

Деформации основания в результате набухания или усадки грунта должны определяться путем суммирования деформаций отдельных слоев основания согласно 6.2.9 и 6.2.15.

При определении деформаций основания осадка его от внешней нагрузки и возможная осадка от уменьшения влажности набухающего грунта должны суммироваться. Подъем основания в результате набухания грунта определяют в предположении, что осадки основания от внешней нагрузки стабилизировались.

Предельные значения деформаций, вызываемых набуханием (усадкой) грунтов, допускается принимать в соответствии с указаниями приложения Е с учетом требований 5.5.50.

6.2.6 При расчете оснований из набухающих грунтов должны применяться характеристики грунтов при их природной плотности и влажности. При расчете оснований из набухающих грунтов после их предварительного замачивания используют характеристики грунта в замоченном состоянии.

Расчетное сопротивление грунтов оснований, сложенных набухающими грунтами, вычисляют по формуле (5.5). При этом рекомендуется учитывать допустимость его повышения согласно указаниям 5.5.24, что будет способствовать уменьшению подъема фундамента при набухании грунта.

6.2.7 Относительное набухание _sw, давление набухания p_sw и относительную усадку _sh определяют по результатам лабораторных испытаний (ГОСТ 24143) с учетом указанных в 6.2.3 причин набухания или усадки. Эти характеристики могут быть получены также по данным полевых испытаний грунтов штампом (за исключением слабонабухающих грунтов).

6.2.8 Нормативные значения характеристик _sw и _sh набухающих грунтов вычисляют как средние значения результатов их определений (ГОСТ 20522). Расчетные значения этих характеристик допускается принимать равными нормативным (_g = 1).

6.2.9 Подъем основания при набухании грунта h_sw, см, определяют по формуле

(6.6)

где _sw,i- относительное набухание грунта i-го слоя, определяемое в соответствии с 6.2.10;

h_i - толщина i-го слоя грунта, см;

k_sw,i- коэффициент, определяемый в соответствии с 6.2.12;

n - число слоев, на которое разбита зона набухания грунта.

6.2.10 Относительное набухание грунта при инфильтрации влаги определяют по формуле

_sw = (h_sat - h_n)/h_n. (6.7)

где h_n - высота образца, см, природной влажности и плотности, обжатого без возможности бокового расширения давлением p, равным суммарному вертикальному напряжению на рассматриваемой глубине (значение определяют в соответствии с 6.2.13);

h_sat - высота того же образца, см, после замачивания до полного водонасыщения и обжатого в тех же условиях.

По результатам испытаний образцов грунта при различном давлении строят зависимости _sw = f(p) и w_sw = f(p) и определяют давление набухания p_sw, соответствующее _sw = 0.

При экранировании поверхности и изменении водно-теплового режима относительное набухание _sw определяют по формуле

_sw = k(w_eq - w_0)/(1 + е_0), (6.8)

где k - коэффициент, определяемый опытным путем (при отсутствии опытных данных принимают равным 2);

w_eq - конечная (установившаяся) влажность грунта, доли единицы, определяемая по 6.2.11;

w_0 и е_0 - соответственно начальные значения влажности и коэффициента пористости грунта, доли единицы.

6.2.11 Значение w_eq i-го слоя при экранировании поверхности определяют по экспериментальной зависимости влажности набухания от нагрузки w_sw = f(p) при давлении p_i, кПа, вычисляемом по формуле

p_i = _w(z - z_i + 2 _tot,I / _i), (6.9)

где _w - удельный вес воды, кН/м3;

z - расстояние от экранируемой поверхности до уровня подземных вод, м;

z_i - глубина залегания рассматриваемого слоя, м;

_tot,i- суммарное напряжение в рассматриваемом i-м слое, кПа;

_i - удельный вес грунта i-го слоя, кН/м3.

Значение (w_eq - w_0) в формуле (6.8) при изменении водно-теплового режима определяют как разность между наибольшим (в период максимального увлажнения) и наименьшим (в период максимального подсыхания) значениями влажности грунта. Коэффициент пористости в этом случае принимают для влажности грунта, отвечающей периоду максимального подсыхания. Профиль влажности массива для случая максимального увлажнения и подсыхания определяют экспериментальным путем в полевых условиях.

6.2.12 Коэффициент k_sw, входящий в формулу (6.6), в зависимости от суммарного вертикального напряжения _z,tot на рассматриваемой глубине принимают равным 0,8 при _z,tot = 50 кПа и k_sw= 0,6 при _z,tot = 300 кПа, а при промежуточных значениях определяют интерполяцией.

6.2.13 Суммарное вертикальное напряжение _z,tot, кПа, на глубине z от подошвы фундамента (рисунок 6.2) определяют по формуле

_z,tot = _zp + _zg + _z,ad, (6.10)

где _zp, _zg - вертикальные напряжения соответственно от нагрузки фундамента и от собственного веса грунта, кПа;

_z,ad - дополнительное вертикальное давление, кПа, вызванное влиянием веса неувлажненной части массива грунта за пределами площади замачивания, определяемое по формуле

_z,ad = k_g (d + z), (6.11)

здесь k_g- коэффициент, принимаемый по таблице 6.2.

- удельный вес грунта, кН/м3;

(d + z) - см. рисунок 6.2.

Таблица 6.2

(d + z)/B_w Коэффициент k_g при отношении длины к ширине замачиваемой площади L_w/B_w, равном
1 2 3 4 5
0,5 0 0 0 0 0
1 0,58 0,50 0,43 0,36 0,29
2 0,81 0,70 0,61 0,50 0,40
3 0,94 0,82 0,71 0,59 0,47
4 1,02 0,89 0,77 0,64 0,53
5 1,07 0,94 0,82 0,69 0,77

6.2.14 Нижнюю границу зоны набухания H_sw, см (рисунок 6.2):

а) при инфильтрации влаги принимают на глубине, где суммарное вертикальное напряжение _z,tot (6.2.13) равно давлению набухания p_sw;

б) при экранировании поверхности и изменении водно-теплового режима определяют опытным путем (при отсутствии опытных данных принимают равной 5 м).

Рисунок 6.2 - Схема к расчету подъема основания при набухании грунта

При наличии подземных вод нижнюю границу зоны набухания принимают на 3 м выше начального уровня подземных вод, но не ниже установленного в позиции а).

6.2.15 Осадку основания в результате высыхания набухшего грунта s_sh, см, определяют по формуле

(6.12)

где _sh,i - относительная линейная усадка грунта i-го слоя, определяемая в соответствии с 6.2.16;

h_i - толщина i-го слоя грунта, см;

k_sh - коэффициент, принимаемый равным 1,3;

п - число слоев, на которое разбита зона усадки грунта, принимаемая в соответствии с 6.2.17.

Допускается принимать _sh,i, определяемую без нагрузки, при этом k_sh = 1,2.

6.2.16. Относительную линейную усадку грунта при его высыхании _sh определяют по формуле

_sh = (h_n - h_d)/h_n, (6.13)

где h_n- высота образца грунта, см, после его максимального набухания при обжатии его суммарным вертикальным напряжением без возможности бокового расширения;

h_d - высота образца, см, в тех же условиях после уменьшения влажности в результате высыхания.

6.2.17 Нижнюю границу зоны усадки H_sh определяют экспериментальным путем, а при отсутствии опытных данных принимают равной 5 м.

При высыхании грунта в результате теплового воздействия технологических установок нижнюю границу зоны усадки H_sh определяют опытным путем или соответствующим расчетом.

6.2.18 При расчетных деформациях основания, сложенного набухающими грунтами, больше предельных или недостаточной несущей способности основания должны предусматриваться следующие мероприятия в соответствии с подразделом 5.8:

- водозащитные мероприятия;

- предварительное замачивание основания в пределах всей или части толщи набухающих грунтов;

- применение компенсирующих песчаных подушек;

- полная или частичная замена слоя набухающего грунта ненабухающим;

- полная или частичная прорезка фундаментами слоя набухающего грунта.

6.2.19 Глубину предварительного замачивания, толщину частично заменяемого слоя набухающего грунта или частичной его прорезки назначают в зависимости от требуемого снижения деформаций от набухания.

6.2.20 При возведении фундаментов на предварительно замоченном основании из набухающих грунтов следует предусматривать устройство подушек из песка, щебня или гравия либо упрочнение верхнего слоя грунта связующими материалами.

6.2.21 Компенсирующие песчаные подушки устраивают на кровле или в пределах слоя набухающих грунтов при давлении, передаваемом на основание, не менее 0,1 МПа.

Для устройства подушек применяют пески любой крупности, за исключением пылеватых, уплотняемые до плотности в сухом состоянии не менее 1,6 т/м3.

Компенсирующие песчаные подушки устраивают только под ленточные фундаменты, когда их ширина не превышает 1,2 м. Размеры подушки назначают по таблице 6.3.

Таблица 6.3

Ширина фундамента b, м Ширина подушки b, м Высота подушки h, м
0,5 < b 0,7 2,4b 1,2b
0,7 < b 1,0 2b 1,15b
1,0 < b 1,2 1,8b 1,1b

6.2.22 Уменьшение подъема фундамента на естественном основании из набухающих грунтов может обеспечиваться путем анкеровки фундамента с помощью свай, частично или полностью прорезывающих набухающий слой. При этом нагрузка, передаваемая сооружением, воспринимается совместно фундаментом и сваями, а предельные деформации (осадки, подъемы) этой конструкции не должны превышать предельных значений.

6.2.23 К числу конструктивных мероприятий относят увеличение жесткости и прочности сооружения путем разбивки его на отдельные отсеки осадочными швами. Отсек должен иметь правильную геометрическую форму в плане и одинаковую высоту. Увеличение жесткости и прочности достигается также введением железобетонных непрерывных поясов толщиной не менее 15 см, устраиваемых по высоте в нескольких уровнях. Пояса следует армировать каркасами, располагаемыми на уровне перекрытий или верха проема и полностью перекрывающими наружные стены. Пояса предусматривают при частичной прорезке набухающих грунтов; частичной замене набухающего грунта ненабухающим; устройстве компенсирующих подушек; предварительном замачивании набухающих грунтов.

6.2.24 Замену набухающего грунта производят местным ненабухающим грунтом, уплотняемым до заданной плотности. Проектирование оснований сооружений в этом случае должно выполняться как на обычных ненабухающих грунтах.

6.2.25 Допускается использовать набухающие грунты для обратной засыпки пазух и траншей при условии, что горизонтальное давление, вызванное их увлажнением, окажется допустимым для данного сооружения, а возможный подъем грунта засыпки не приведет к ухудшению условий эксплуатации. Уплотнение грунтов производят в соответствии с требованиями, принятыми для устройства грунтовых подушек и обратных засыпок из обычных грунтов.

6.3 Засоленные грунты

6.3.1 Основания, сложенные засоленными грунтами, должны проектироваться с учетом их особенностей, обуславливающих:

- образование при длительной фильтрации воды и выщелачивании солей суффозионной осадки ssf;

- изменение в процессе выщелачивания солей физико-механических свойств грунта, сопровождающееся, как правило, снижением его прочностных характеристик;

- повышенную агрессивность подземных вод к материалам подземных конструкций за счет растворения солей, содержащихся в грунте.

Следует также иметь в виду, что в засоленных грунтах при их замачивании может проявляться просадка или набухание.

Примечание - Отнесение грунтов к засоленным и их подразделение в зависимости от суммарного содержания легко- и среднерастворимых солей по степени засоленности следует производить по ГОСТ 25100.

6.3.2 Засоленные грунты характеризуют относительным суффозионным сжатием _sf и начальным давлением суффозионного сжатия p_sf.

Значения _sf и p_sf определяют, как правило, лабораторными методами (компрессионно-фильтрационные испытания), а для детального изучения отдельных участков строительной площадки - полевыми испытаниями статической нагрузкой с длительным замачиванием основания. При наличии результатов полевых испытаний и опыта строительства в аналогичных инженерно-геологических условиях указанные характеристики допускается определять только лабораторными методами.

Значения _sf и p_sf определяют в соответствии с 6.3.14.

6.3.3 Для предварительных расчетов суффозионной осадки основания сооружений I и II уровней ответственности и для окончательных расчетов сооружений III уровня ответственности допускается определять значение относительно суффозионного сжатия _sf, глинистых загипсованных грунтов по формуле (6.14), если они представлены:

- суглинками с w = 0,02 - 0,04; I_L = 0,08 - 0,12; _d = 1,2 - 1,6 г/см3; е = 0,75 - 1,1;

- супесями с w = 0,01 - 0,03; I_L= 0,03 - 0,07; _d = 1,4 - 1,45 г/см3; е = 0,9 - 1,0.

(6.14)

где k_1 - коэффициент, зависящий от вида грунта, содержания гипса и давления и принимаемый по таблице 6.4;

d_0 - начальное содержание гипса в грунте, доли единицы;

_d - начальная плотность сухого грунта, г/см3;

_g - плотность частиц гипса, г/см3;

- степень выщелачивания, доли единицы;

n - коэффициент, принимаемый для суглинков равным 1, для супесей - 1/3.

Таблица 6.4

Вид грунта Содержание гипса, доли единицы Коэффициент k_1 при давлении, МПа
0,1 0,2 0,3 0,4
Супесь 0,1 0,86 0,70 0,52 0,43
0,2 0,95 0,90 0,83 0,76
0,3 0,97 0,95 0,90 0,85
Суглинок 0,1 0,08 0,15 0,30 0,46
0,2 0,15 0,27 0,50 0,84
0,3 0,45 0,60 0,80 1,10
0,4 0,85 0,96 1,07 1,30
0,5 1,08 1,15 1,22 1,38

6.3.4 Нормативные значения характеристик засоленных грунтов _sf и p_sf вычисляют как средние значения результатов их определений (ГОСТ 20522). Расчетные значения допускается принимать равными нормативным (_g = 1).

6.3.5 Расчет оснований, сложенных засоленными грунтами, должен производиться в соответствии с требованиями раздела 5. Если засоленные грунты являются просадочными или набухающими, следует учитывать соответственно требования подразделов 6.1 и 6.2.

6.3.6 Расчетное сопротивление R основания, сложенного засоленными грунтами, при возможности длительного замачивания грунтов и выщелачивания солей определяют по формуле (5.5) с использованием расчетных значений прочностных характеристик (_II и с_II), полученных для грунтов в водонасыщенном состоянии после выщелачивания солей.

При невозможности длительного замачивания грунтов и выщелачивания солей значение R следует определять по формуле (5.5) с использованием прочностных характеристик, полученных для засоленных грунтов в водонасыщенном состоянии.

При вычислении R для частично или полностью выщелоченных грунтов коэффициент условий работы грунтового основания _с1 в формуле (5.5) для загипсованных суглинков с начальным содержанием гипса d_0 20% принимают равным 1,1, а для суглинков с d_0 > 20% и для всех загипсованных супесей _с1= 1.

Коэффициент условий работы сооружения _с2 во взаимодействии с основанием в формуле (5.5) для всех засоленных грунтов принимают равным единице.

Коэффициент k в формуле (5.5) принимают равным единице при определении прочностных характеристик засоленных грунтов в лабораторных условиях в приборах трехосного сжатия и в полевых условиях методом сдвига целика и k = 1,1 при определении этих характеристик в лабораторных условиях в приборах одноплоскостного среза и по таблицам приложения Г.

6.3.7 Деформации основания определяют суммированием осадки основания при природной влажности от внешней нагрузки (подраздел 5.5) и суффозионной осадки, а также просадки, набухания или усадки, если засоленные грунты являются просадочными или набухающими.

При невозможности длительного замачивания грунтов и выщелачивания солей деформации основания определяют по подразделу 5.5 исходя из деформационных характеристик засоленных грунтов при полном водонасыщении.

6.3.8 Максимальные и средние суффозионные осадки, разность осадок и крены отдельных фундаментов и сооружения в целом необходимо рассчитывать с учетом неравномерности замачивания основания, схемы фильтрационного потока в пределах отдельного фундамента или контура сооружения, неоднородности распределения солей в грунте по площади и по глубине основания.

6.3.9 Расчет суффозионной осадки основания, сложенного глинистыми грунтами с легкорастворимыми солями и загипсованными песками, следует выполнять в пределах зоны, условно ограниченной глубиной сжимаемой толщи Н_с, определяемой по 5.5.41. При этом принимают, что в пределах сжимаемой толщи грунты подвергаются полному рассолению, т.е. степень выщелачивания , определяемая по ГОСТ 12248, равна единице.

6.3.10 При расчете суффозионных осадок оснований, сложенных загипсованными глинистыми грунтами, принимают, что:

- длина зоны, в пределах которой возможно выщелачивание гипса (выщелачиваемая зона H_l, ограничена условием предельного насыщения гипсом фильтрующей жидкости;

- в процессе фильтрации происходит развитие выщелачиваемой зоны, т.е. увеличивается ее длина и уменьшается содержание гипса в грунте в направлении движения фильтрационного потока;

- суффозионные осадки основания происходят только в пределах выщелачиваемой зоны.

6.3.11 При расчете суффозионных осадок основания, сложенного загипсованными глинистыми грунтами, следует различать две схемы фильтрационного потока в основании фундамента (рисунок 6.3).

1 - вертикальная фильтрация; 2 - горизонтальная фильтрация в слое ограниченной толщины

Рисунок 6.3 - Схемы замачивания фундаментов

При расчете суффозионных осадок основания по схеме 1 сначала следует определить состояние выщелачиваемой зоны H_i, т.е. ее длину и распределение в ней гипса в расчетный момент времени (например, через 5, 10 лет и так далее после начала эксплуатации сооружения). Для этого необходимо выделить слои с различным содержанием гипса (рисунок 6.4). При этом начальное распределение гипса в грунте представляется в виде ступенчатой эпюры d0(z). Выделенные слои разбивают на более мелкие, толщиной 0,5 м, для которых производят расчет процесса рассоления.

Если основание сложено однородным грунтом, то начальное содержание гипса принимают постоянным в пределах выщелачиваемой зоны d0(z) = const, а вся зона разбивается на слои по 0,5 м.

После разбивки основания на слои следует последовательно в каждом слое, начиная с верхнего, определить количество оставшегося в твердой фазе гипса в расчетный момент времени. При этом слой, в котором содержание гипса будет равно начальному, является нижней границей выщелачиваемой зоны Н_l Для нижележащих слоев расчет растворения гипса производить не следует.

6.3.12 При расчете суффозионных деформаций основания, сложенного загипсованными глинистыми грунтами, при фильтрации по схеме 1 (см. рисунок 6.3) зона суффозионной осадки в основании фундамента ограничивается глубиной Н_с, где суммарные вертикальные напряжения от нагрузки фундамента и собственного веса грунта равны начальному давлению суффозионного сжатия p_sf.

1 - границы слоев с различным содержанием гипса; 2 - границы расчетных слоев; 3 - расчетный слой; 4 - направление фильтрации; 5 - начальная эпюра относительного содержания гипса d0(z)

Рисунок 6.4 - Схема для расчета рассоления основания при вертикальной фильтрации

Если на расчетный момент времени Н_l Н_с, расчет суффозионной осадки следует производить только в пределах выщелачиваемой зоны H_l. При Н_l > Н_с расчет осадки необходимо выполнять в пределах сжимаемой толщи Н_с. Глубину Н_с принимают за границу сжимаемой толщи (рисунок 6.5).

Рисунок 6.5 - Схема для расчета суффозионной осадки засоленного грунта при вертикальной фильтрации

6.3.13 Суффозионную осадку основания s_sf, см, сложенного засоленными грунтами, при вертикальной фильтрации (схема 1) определяют по формуле

(6.15)

где _sf,i - относительное суффозионное сжатие грунта i-го слоя при давлении р, равном суммарному вертикальному напряжению на рассматриваемой глубине от внешней нагрузки _zp и собственного веса грунта _zg, определяемое по 6.3.14;

h_i - толщина i-го слоя засоленного грунта, см;

n - число слоев, на которое разбита зона суффозионной осадки засоленных грунтов.

Значение s_sf определяют в пределах зон, устанавливаемых по 6.3.9 и 6.3.12.

6.3.14 Относительное суффозионное сжатие _sf,i при компрессионно-фильтрационных испытаниях (ГОСТ 12248) определяют по формуле

_sf = (h_sat,p - h_sf,p)/h_ng, (6.16)

где h_sat,p- высота образца грунта после замачивания (полного водонасыщения) при давлении р = _zp + _zg;

h_sf,p- высота того же образца после длительной фильтрации воды и выщелачивания солей при давлении р;

h_ng - высота того же образца природной влажности при давлении р_1 = s_zg.

Начальное давление суффозионного сжатия соответствует давлению, при котором _sf = 0,01. Значения _sf и p_sf могут быть определены также при полевых испытаниях грунтов штампом с длительным замачиванием грунтов (ГОСТ 20276).

6.3.15 Деформации оснований при фильтрации по схеме 2 (см. рисунок 6.3) следует рассчитывать с учетом развития во времени выщелачиваемой зоны в горизонтальном направлении и неоднородности деформационных свойств грунтов основания в пределах площади фундамента или контура сооружения.

Как и при фильтрации по схеме 1 необходимо установить состояние выщелачиваемой зоны в основании фундамента на расчетный момент времени (ее длину и распределение в ней гипса). Для установленного состояния выщелачиваемой зоны следует определить осадку сторон фундамента и его крен.

Начальное содержание гипса в грунте принимают постоянным (d_0 = const) как по глубине загипсованной толщи, так и по площади фундамента и в его окрестности (рисунок 6.6), и равным среднему значению загипсованности толщи.

Разбивку основания на вертикальные слои шириной по 0,5 м следует производить в пределах от z = 0 (источник замачивания) до z = l + 2L + 1, где l - расстояние до фундамента, a 2L - ширина фундамента. Направление формирования и перемещения выщелачиваемой зоны принимают горизонтальным.

1 - входной участок фильтрационного потока; 2 - направление фильтрации; 3 - расчетный слой; 4 - границы расчетных слоев

Рисунок 6.6 - Схема для расчета рассоления основания при горизонтальной фильтрации

6.3.16 Для расчета осадок сторон фундамента при фильтрации по схеме 2 рекомендуется применять метод расчета конструкций на основании, характеризующемся переменным коэффициентом постели. Расчетная схема предусматривает наличие двух участков в основании фундамента (рисунок 6.7), где участок 1 равен длине выщелачиваемой зоны. Коэффициент постели на этом участке изменяется от c_min под одной стороной фундамента, ближайшей к источнику замачивания, до с_mах на границе выщелачиваемой зоны. Участок 2 равен длине невыщелоченной зоны. Коэффициент постели на этом участке постоянен и равен с_mах.

6.3.17 При расчетных деформациях основания, сложенного засоленными грунтами, больше предельных или недостаточной несущей способности основания должны предусматриваться следующие мероприятия в соответствии с подразделом 5.8:

- водозащитные;

- конструктивные;

- частичная или полная срезка засоленных грунтов с устройством подушки из глинистых грунтов;

- прорезка толщи засоленных грунтов фундаментами, в том числе свайными;

- закрепление, уплотнение или нейтрализация (насыщение грунтов растворами, исключающими растворение солей) грунтов;

- предварительное рассоление грунтов;

- комплекс мероприятий, включающий водозащитные и конструктивные мероприятия, а также устройство грунтовой подушки.

При устройстве подушки из глинистых грунтов в основании сооружений предельное содержание солей и степень уплотнения грунта должны устанавливаться по данным специальных исследований и зависят от передаваемых на основание нагрузок, свойств грунта, уровня ответственности и конструктивных особенностей сооружения, возможных условий замачивания основания.

Рисунок 6.7 - Схема для расчета деформаций засоленного грунта при горизонтальной фильтрации

При проектировании фундаментов в засоленных грунтах необходимо применять антикоррозионные мероприятия для защиты тела фундамента от агрессивного воздействия вод и грунтов.

Для сильно- и избыточно засоленных грунтов (ГОСТ 25100) рекомендуется применять:

- прекращение или замедление движения фильтрационного потока (устройство водонепроницаемых завес: глинистых, силикатных, битумных, цементных);

- снижение растворяющей способности подземных вод (искусственное водонасыщение фильтрационного потока солями).

6.4 Органо-минеральные и органические грунты

6.4.1 Основания, сложенные водонасыщенными органо-минеральными (илы, сапропели, заторфованные грунты) и органическими грунтами (торфы) или включающие эти грунты, должны проектироваться с учетом их особенностей: большой сжимаемости, существенной изменчивости и анизотропии прочностных, деформационных и фильтрационных характеристик и изменений их в процессе консолидации основания, длительного развития осадок во времени и возможности возникновения нестабилизированного состояния.

Для илов необходимо учитывать тиксотропию и газовыделение.

Следует учитывать также, что подземные воды в органо-минеральных и органических грунтах, как правило, сильно агрессивны к материалам подземных конструкций.

6.4.2 По характеру залегания органо-минеральные и органические грунты делятся на открытые (залегающие с поверхности), погребенные (залегающие в виде линз или слоев на различной глубине) и искусственно погребенные (перекрытые искусственно сформированными отложениями).

6.4.3 В зависимости от расположения слоев или линз органо-минерального и органического грунта в плане и по глубине основания выделяют наиболее распространенные типы оснований, приведенные на рисунке 6.8.

6.4.4 При проведении инженерно-геологических изысканий следует дополнительно устанавливать:

- характер залегания органо-минеральных и органических грунтов (рисунок 6.8) и толщину слоев, прослоек и линз этих грунтов;

- содержание органического вещества I_om для выделения заторфованных грунтов, торфов и сапропелей (ГОСТ 25100);

- степень разложения органического вещества D_pd в торфах;

- коэффициент консолидации.

Расстояние между отдельными скважинами не должно превышать 20 м и они должны полностью прорезать толщу органо-минеральных и органических грунтов с заглублением не менее чем на 2 м в подстилающие минеральные грунты.

Определение характеристик органо-минеральных и органических грунтов должно производиться не менее чем через 0,5 м по глубине каждого обнаруженного слоя.

I - в пределах всей сжимаемой толщи основания залегают органо-минеральные или органические грунты; II - в верхней части сжимаемой толщи основания залегает слой органо-минерального или органического грунта; III - в нижней части сжимаемой толщи основания залегают органо-минеральные или органические грунты; IV - сжимаемая толща в пределах пятна застройки здания включает односторонне (IVa), двусторонне (IVб) вклинившиеся линзы или содержит множество линз (IVв) из органо-минеральных или органических грунтов; V - в пределах глубины сжимаемой толщи находится одна (Va) или несколько прослоек (Vб) органо-минерального или органического грунта, границы которых в плане выходят за пределы пятна застройки здания

Рисунок 6.8 - Типовые схемы оснований, содержащих органо-минеральные и органические грунты

6.4.5 На площадках с илами с целью сохранения природной структуры этого грунта должны применяться методы испытаний, исключающие динамическое воздействие на грунт. Рекомендуется применение штампов, прессиометров, статического зондирования, приборов вращательного среза, радиоизотопных методов и т.д.

6.4.6 Следует выделять пресноводные илы с содержанием органического вещества более 10% - сапропели. В зависимости от условий залегания сапропели подразделяют на неуплотненные и уплотненные в природном залегании; по содержанию органического вещества - на минеральные, среднеминеральные и слабоминеральные.

6.4.7 Характеристики органо-минеральных и органических грунтов должны определяться, как правило, на основе непосредственных испытаний грунтов в полевых или лабораторных условиях.

Ориентировочные значения физико-механических характеристик сапропелей, открытых и погребенных торфов и илов, которые могут быть использованы для предварительной оценки оснований, сложенных указанными грунтами, приведены в приложении Ж.

Для глинистых грунтов с содержанием органических веществ в долях единицы в диапазоне 0,05 I_om 0,25 нормативные значения характеристик Е, _n и с_n для расчетов оснований сооружений, оговоренных в 5.3.17, допускается принимать по таблице Г.4 приложения Г.

6.4.8 Деформационные, прочностные и фильтрационные характеристики органо-минеральных и органических грунтов должны определяться в диапазоне давлений, соответствующих напряженному состоянию основания проектируемого сооружения. Указанные характеристики должны устанавливаться при испытаниях образцов грунта в вертикальном и горизонтальном направлениях.

6.4.9 Для определения прочностных характеристик и с органо-минеральных и органических грунтов следует проводить испытания, применяя методику консолидированного среза для определения этих характеристик в стабилизированном состоянии и неконсолидированного среза для определения в нестабилизированном состоянии (ГОСТ 12248).

6.4.10 В полевых условиях деформационные характеристики органо-минеральных и органических грунтов определяют методами, указанными в ГОСТ 20276. При определении деформационных характеристик этих грунтов в компрессионных приборах, учитывая их высокую сжимаемость, испытуемые образцы должны иметь начальную высоту 30-50 мм, а их нагружение следует проводить небольшими ступенями согласно ГОСТ 12248.

Максимальное давление на образец в компрессионном опыте должно превышать проектное не менее чем на 10-20%, но быть не менее 0,1 МПа.

Значения модуля деформации по результатам опыта должны устанавливаться для различных интервалов давлений и использоваться в расчетах осадки в зависимости от фактических нормальных напряжений по глубине основания в пределах сжимаемой толщи.

6.4.11 Коэффициент бокового давления органо-минеральных и органических грунтов , определяют в приборах трехосного сжатия. Допускается принимать значения по таблицам приложения Ж.

6.4.12 При применении комплекса мероприятий по предварительной подготовке основания, содержащего органо-минеральные и органические грунты (временная или постоянная пригрузка, дренирование и т.п.), характеристики этих грунтов должны устанавливаться по результатам их испытаний после уплотнения.

6.4.13 При расчете оснований должны учитываться анизотропные свойства органо-минеральных и органических грунтов. В каждой точке основания следует отбирать не менее двух образцов для определения характеристик в двух направлениях: вертикальном и горизонтальном. Коэффициент фильтрации также должен определяться для этих двух направлений.

Обозначения характеристик грунта с анизотропными свойствами должны иметь индекс, указывающий диапазоны давлений и их направление при испытании (горизонтальное или вертикальное).

6.4.14 Расчет оснований, сложенных органо-минеральными и органическими грунтами, должен производиться в соответствии с требованиями раздела 5 с учетом скорости передачи нагрузки на основание, изменения эффективных напряжений в грунте в процессе консолидации основания, анизотропии свойств грунтов, вторичной консолидации. При этом допускается использовать методы теории как линейной, так и нелинейной консолидации грунтов.

Примечание - Анизотропию свойств органо-минеральных и органических грунтов допускается не учитывать, если значения характеристик для вертикального и горизонтального направлений отличаются не более чем на 40%.

6.4.15 При наличии в основании дренирующих слоев необходимо учитывать фильтрацию поровой воды в их сторону, а при наличии песчаной подушки под фундаментом - также в сторону этой подушки. Учитывать действие дренирующего слоя допускается только в том случае, если он не представляет собой замкнутую линзу, а песчаной подушки под фундаментом - если обратная засыпка пазух произведена также дренирующим грунтом.

6.4.16 Основания, сложенные водонасыщенными органо-минеральными и органическими грунтами, в соответствии с 5.1.3 и 5.6.5 должны рассчитываться по несущей способности.

В этих расчетах силу предельного сопротивления основания n_u, кН/м, при действии вертикальной нагрузки для ленточного фундамента допускается определять по формуле

n_u = b'(q + 5,14c_I), (6.17)

где b' - то же, что и в формуле (5.27);

q - пригрузка, кПа;

c_I - расчетное значение удельного сцепления грунта, кПа, равное с_u.

6.4.17 При намыве на дно водоема, сложенного органо-минеральными и органическими грунтами, песчаного слоя его толщина должна определяться необходимыми планировочными отметками с расчетом несущей способности основания и с учетом возможности возникновения нестабилизированного состояния.

6.4.18 При расчете по деформациям оснований, включающих водонасыщенные органо-минеральные и органические грунты, расчетное сопротивление грунта основания R определяют по формуле (5.5). При этом коэффициент условий работы грунтового основания _c_I принимают по таблице 6.5.

Таблица 6.5

Наименование грунтов и степень их заторфованности I_om Коэффициент условий работы грунтового основания _c_I
Пески мелкие водонасыщенные:
0,03 < I_om 0,25 0,85
0,25 < I_om 0,4 0,80
Пески пылеватые водонасыщенные:
0,03 < I_om 0,25 0,75
0,25 < I_om 0,4 0,70
Глинистые грунты водонасыщенные
0,05 < I_om 0,25 при показатели текучести:
I_L 0,5 1,05
I_L > 0,5 1,00
Глинистые грунты водонасыщенные
0,25 < I_om 0,40 при показателе текучести:
I_L 0,5 0,90
I_L > 0,5 0,80

6.4.19 Для предварительного определения размеров фундаментов сооружений I и II уровней ответственности на заторфованных песках и окончательного для сооружений III уровня ответственности допускается принимать расчетные сопротивления R_0 по таблице Д.5 приложения Д.

6.4.20 Расчетную схему для определения конечных осадок фундаментов на основании, включающем водонасыщенные органо-минеральные и органические грунты, принимают по разделу 5.

Дополнительную осадку фундаментов за счет разложения (минерализации) органических включений допускается не учитывать, если в период срока службы сооружения уровень подземных вод не будет понижаться.

Осадку слоя сильнозаторфованного грунта или торфа при намыве или отсыпке на него песчаного слоя определяют по 6.4.30 и 6.4.31.

6.4.21 В расчете по деформациям основания, содержащего органо-минеральные и органические грунты, нижнюю границу сжимаемой толщи принимают в соответствии с рекомендациями 5.5.41.

6.4.22 Опирание фундаментов непосредственно на поверхность органо-минеральных и органических грунтов не допускается, если они представлены сильнозаторфованными грунтами и торфами, сапропелями и илами.

Если непосредственно под подошвой фундамента залегает слой грунта с модулем деформации Е < 5 МПа толщиной более ширины фундамента, то осадка основания должна определяться с учетом полного давления под подошвой фундамента.

6.4.23 При расчетных деформациях основания, сложенного органо-минеральными и органическими грунтами, больше предельных или недостаточной несущей способности основания должны предусматриваться следующие мероприятия в соответствии с подразделом 5.8:

- полная или частичная прорезка слоев органо-минеральных и органических грунтов фундаментами;

- полная или частичная замена органо-минерального и органического грунта песком, гравием, щебнем и т.д.;

- уплотнение грунтов временной или постоянной пригрузкой основания сооружения или всей площадки строительства насыпным (намывным) грунтом или другим материалом (с устройством фильтрующего слоя или дрен при необходимости ускорения процесса консолидации основания);

- закрепление илов буросмесительным способом.

6.4.24 В зависимости от типа основания (см. рисунок 6.8), степени заторфованности, глубины залегания и толщины органо-минеральных и органических грунтов, а также конструктивных особенностей проектируемого сооружения и предъявляемых к нему эксплуатационных требований рекомендуются следующие варианты специальных мероприятий:

- уплотнение основания временной или постоянной нагрузкой, в том числе с устройством вертикальных дрен и дренажных прорезей - для оснований I и II типов;

- полная или частичная прорезка слоя органо-минеральных и органических грунтов фундаментами, в том числе свайными, - для оснований II, IV и V типов;

- выторфовка линз или слоев органо-минерального и органического грунта с заменой его минеральным грунтом - для оснований II, IV и V типов;

- устройство фундаментов (столбчатых, ленточных и т.п.) на песчаной, гравийной, щебеночной подушке или на предварительно уплотненной подсыпке из местного материала - для всех типов оснований;

- устройство сооружений на плитных фундаментах, перекрестных монолитных или сборно-монолитных лентах и т.п. с конструктивными мероприятиями по повышению пространственной жесткости сооружения - для всех типов оснований.

6.4.25 В отдельных случаях основание, содержащее органо-минеральные и органические грунты, может быть использовано при соблюдении определенной скорости передачи нагрузки или при применении конструктивных мероприятий (введение поясов жесткости, разбивка здания на отдельные секции и т.п.).

6.4.26 Песчаные подушки, устраиваемые под фундаментами с целью замены органо-минеральных и органических грунтов, уменьшения давления на нижележащие слои, повышения, в случае необходимости, отметки подошвы фундаментов, ускорения процесса консолидации (уплотнения) нижележащих грунтов, устраивают, как правило, из песков крупных и средней крупности. В отдельных случаях допускается применение щебня, гравия, шлака или гравийно-песчаной смеси. Мелкие пески для устройства подушек не рекомендуются.

Плотность сухого грунта в подушках из песка крупного и средней крупности рекомендуется не менее 1,65 т/м3.

При назначении прочностных характеристик уплотненного грунта в подушках следует учитывать указания 5.5.15.

6.4.27 Для намыва слоя грунта в качестве основания сооружения могут применяться супеси и пески любой крупности. Для ускорения консолидации намываемого слоя пылеватых песков или супесей необходимы предварительный намыв или укладка на маловодопроницаемое естественное основание, сложенное органо-минеральными и органическими грунтами, дренирующего слоя, например, из песка средней крупности.

6.4.28 Проектирование пригрузки должно производиться с учетом требований 6.4.12. При этом должны быть установлены толщина и размеры в плане пригрузочного слоя и время, необходимые для достижения заданной степени консолидации основания, а также конечная осадка основания под пригрузкой.

6.4.29 Конечную осадку и время консолидации слоя органо-минерального и органического грунта при намыве или отсыпке на него песчаного слоя определяют без учета осадки подстилающего слоя, если его модуль деформации в 10 раз и более превышает модуль деформации органо-минерального и органического грунта.

Нагрузку от намыва или отсыпки и порядок ее учета в расчетах конечной осадки, а также время консолидации слоя органо-минерального и органического грунта определяют в соответствии с принятым проектом организации работ.

6.4.30 Конечную осадку слоя органо-минерального и органического грунта в стабилизированном состоянии s, м, вызванную намытым или отсыпанным слоем песка, определяют по формуле

s = 3ph/(3E + 4р), (6.18)

где р - давление от песчаной насыпи на поверхность органо-минерального и органического грунта, кПа;

h - толщина слоя органо-минерального и органического грунта, м;

Е - модуль деформации органо-минерального и органического грунта при полной влагоемкости, кПа. Размер насыпи в плане должен быть не менее 5h.

6.4.31 В случае если основание, содержащее органо-минеральные и органические грунты, состоит из нескольких горизонтальных слоев с различными модулями деформации, осадку всей толщи в конце периода стабилизации определяют как сумму осадок отдельных слоев.

6.4.32 При толщине слоев органо-минеральных и органических грунтов, превышающей 3 м, их рекомендуется уплотнять с использованием вертикальных дрен.

План расположения дрен, их сечение и шаг устанавливают расчетом из условия 90% консолидации основания или в зависимости от назначаемых сроков уплотнения строительной площадки. В плане дрены располагают в углах квадратов или равносторонних треугольников с шагом: для песчаных дрен 1,5-3 м, для дрен заводского изготовления 0,5-2 м.

Для сооружений I и II уровней ответственности шаг дрен определяют на опытных участках.

6.4.33 При использовании вертикальных дрен, полностью прорезающих уплотняемый слой грунта, и наличии дренирующих слоев на концах дрены консолидация грунта под нагрузкой происходит за счет отжатия поровой воды в дрену и дренирующие слои. Эквивалентный диаметр зоны влияния дрен d_e в этом случае следует принимать при расположении дрен по квадратной сетке d_e = 1,13d; по гексагональной сетке - d_e - 1,05d, где d - расстояние между осями дрен (шаг дрен).

6.4.34 В проектах сооружений, возводимых на органо-минеральных и органических грунтах, должны предусматриваться следующие нормы натурных измерений деформаций оснований и фундаментов:

- при застройке новых районов типовыми зданиями высотой 5 этажей и более - одно наблюдаемое здание на 3 строящихся;

- при застройке квартала - первое по очередности постройки здание I и II уровней ответственности;

- для всех сооружений, имеющих конструкции пролетом более 24 м;

- для сооружений, в которых в ходе строительства или эксплуатации возникли значительные деформации несущих конструкций или появились трещины.

6.5 Элювиальные грунты

6.5.1 Основания, сложенные элювиальными грунтами - продуктами выветривания скальных и полускальных пород, оставшимися на месте своего образования и сохранившими структуру и текстуру исходных пород, должны проектироваться с учетом:

- их значительной неоднородности по глубине и в плане из-за наличия грунтов разной степени выветрелости с большим различием их прочностных и деформационных характеристик;

- снижения прочностных и деформационных характеристик во время их длительного пребывания в открытых котлованах;

- возможности перехода в плывунное состояние элювиальных супесей и пылеватых песков в случае их водонасыщения в период устройства котлованов и фундаментов;

- возможного наличия просадочных свойств у элювиальных пылеватых песков с коэффициентом пористости е > 0,6 и степенью влажности S_r < 0,7, а также возможности набухания элювиальных глинистых грунтов при замачивании отходами технологических производств.

6.5.2 В зависимости от исходных горных пород, подвергшихся выветриванию, следует выделять элювиальные грунты магматических, метаморфических и осадочных сцементированных скальных грунтов, а по содержанию кварца - подразделять элювиальные грунты на две группы: содержащие кварц и бескварцевые.

6.5.3 Профиль коры выветривания в общем случае может быть представлен сверху вниз следующими зонами, различающимися степенью выветрелости: дисперсной, обломочной, глыбовой и трещиноватой. В соответствии с выделенными зонами наблюдается возрастание по глубине плотности элювиальных образований, уменьшение пористости и трещиноватости и увеличение прочности крупных обломков и отдельностей.

6.5.4 При проведении инженерно-геологических изысканий на элювиальных грунтах должны быть выявлены: генетический вид и петрографический состав исходной скальной породы; структура и профиль коры выветривания, ее трещиноватость, сланцеватость, слоистость, элементы падения и простирания, поверхности скольжения, наличие "языков" и "карманов" выветривания; размеры, форма и количество крупных включений; изменение по глубине состава и свойств грунтов.

6.5.5 Степень снижения прочности элювиальных грунтов основания во время пребывания их открытыми в котловане должна устанавливаться опытным путем в полевых условиях. Допускается проводить определение этих параметров в лабораторных условиях на отобранных образцах (монолитах) грунта.

Для предварительной оценки возможного снижения прочности элювиальных грунтов допускаются косвенные методы, учитывающие изменение в течение заданного периода времени: плотности скальных грунтов; удельного сопротивления пенетрации глинистых грунтов; содержания частиц размером менее 0,1 мм в песках и менее 2 мм в крупнообломочных грунтах.

6.5.6 Количественную оценку снижения прочности элювиальных грунтов в открытых котлованах производят по изменению их прочностных и деформационных характеристик в период дополнительного выветривания, а качественную оценку - по изменению значений плотности образцов грунта, их водопоглощающей способности, интенсивности распада (дробления) крупных обломков, глыб и отдельностей.

Необходимо устанавливать также толщину верхнего ослабленного дополнительным выветриванием слоя элювиального грунта.

6.5.7 Оценку стойкости элювиальных грунтов к дополнительному (атмосферному) выветриванию, устанавливающую степень снижения их прочности в открытых котлованах за ожидаемый период времени t (годы, месяцы, сутки), производят путем определения:

- скорости снижения выбранного параметра степени выветрелости А за период времени t: (A_1 - A_2)/t;

- степени снижения выбранного параметра А: (А_1 - А_2)/А_1,

- общего количественного снижения параметра А за весь период t: (А_1 - А_2). Ожидаемый период пребывания элювиальных грунтов открытыми в разработанных котлованах, а также интервалы времени t, через которые проводят определения количественных значений параметра А, устанавливают исходя из конкретных особенностей района и сроков строительства.

6.5.8 Для элювиальных скальных и крупнообломочных грунтов необходимо устанавливать степень их выветрелости, характеризуемую коэффициентом выветрелости (6.5.9 и 6.5.10), а для крупнообломочных грунтов также - относительную прочность обломков, характеризуемую коэффициентом истираемости (6.5.11).

6.5.9 Коэффициент выветрелости k_ur элювиальных скальных грунтов устанавливают путем сопоставления плотности выветрелой породы в условиях природного залегания с плотностью _u невыветрелой (монолитной) породы и вычисляют по формуле

k_ur = 1 - I_ur. (6.19)

где I_ur = (_u - )/ .

Допускается значение _u принимать равным плотности частиц скального грунта.

Подразделение элювиальных скальных грунтов по степени выветрелости приведено в таблице 6.6, а ориентировочные значения предела прочности на одноосное сжатие в водонасыщенном состоянии R_c, которые могут быть использованы для предварительной оценки оснований из этих грунтов, приведены в приложении И.

Таблица 6.6

Разновидность элювиальных скальных грунтов по степени выветрелости Коэффициент выветрелости k_ur для скальных грунтов
магматических и метаморфических осадочных сцементированных
Невыветрелые 1 1
Слабовыветрелые 1 > k_ur 0,9 1 > k_ur 0,95
Выветрелые 0,9 > k_ur 0,8 0,95 > k_ur 0,85
Сильновыветрелые (рухляки) Менее 0,8 Менее 0,85

6.5.10 Коэффициент выветрелости крупнообломочных элювиальных грунтов k_uw определяют по испытаниям проб грунта на истирание во вращающемся полочном барабане и вычисляют по формуле

k_uw = (k_1 - k_0)/k_1, (6.20)

где k_1 - отношение массы m_1, частиц размером менее 2 мм к массе m_2 частиц размером более 2 мм после испытания на истирание;

k_0 - то же, в природном состоянии (до испытания на истирание). Подразделение крупнообломочных элювиальных грунтов по степени выветрелости приведено в таблице 6.7.

6.5.11 Коэффициент истираемости k_е крупных обломков (частиц более 2 мм) крупнообломочных элювиальных грунтов определяют по испытаниям на истираемость этих частиц во вращающемся полочном барабане и вычисляют по формуле

k_е = m_1 / m_0, (6.21)

где m_1 - масса частиц размером менее 2 мм после испытания на истирание;

m_0 - начальная масса пробы крупных обломков.

Подразделение крупных обломков по прочности в зависимости от значений k_е приведено в таблице 6.8.

Таблица 6.7

Разновидности элювиальных крупнообломочных грунтов по степени выветрелости Коэффициент выветрелости k_uw для кнупнообломочных грунтов при исходных образующих породах
магматических и метаморфических осадочных сцементированных
Невыветрелые 0 < k_uw 0,5 0 < k_uw 0,33
Слабовыветрелые 0,5 < k_uw 0,75 0,33 < k_uw 0,67
Сильновыветрелые 0,75 < k_uw < 1 0,67 < k_uw < 1

Таблица 6.8

Наименование обломков по прочности на истирание Коэффициент истираемости обломков k_e
Очень прочные k_e 0,05
Прочные 0,05 < k_e 0,2
Средней прочности 0,2 < k_e 0,3
Малопрочные 0,3 < k_e 0,4
Непрочные k_e > 0,4

6.5.12 При подразделении крупнообломочных элювиальных грунтов по гранулометрическому составу на разновидности в дополнение к ГОСТ 25100 необходимо указывать содержание частиц заполнителя размером менее 0,1 мм, а также выделять щебенисто-дресвяные грунты при содержании частиц менее 0,1 мм до 10%, а частиц крупнее 10 мм - более 25% по массе.

Ориентировочные значения модуля деформации для разновидностей элювиальных крупнообломочных грунтов приведены в приложении И.

6.5.13 В элювиальных песках и глинистых грунтах - продуктах выветривания магматических и метаморфических пород - следует выделять прочноструктурные и слабоструктурные разновидности.

К прочноструктурным (сапролитам) относятся пески и глинистые грунты, в которых частично сохранена макроструктура исходных пород и которые при природной влажности характеризуются пределом прочности на одноосное сжатие R_c 0,2 МПа.

Элювиальные пески и глинистые грунты, имеющие при природной влажности значение R_c < 0,2 МПа, относятся к слабоструктурным. Нормативные значения Е, и с этих грунтов для расчетов оснований сооружений, оговоренных в 5.3.17, допускается принимать по таблицам Г.5 и Г.6 приложения Г.

6.5.14 Элювиальные глинистые грунты - продукты выветривания осадочных сцементированных скальных грунтов аргиллито-алевролитового комплекса - представлены в основном суглинками и глинами. Нормативные значения Е, и с этих грунтов допускается принимать по таблице Г.7 приложения Г, а для песков осадочных пород - по таблице Г.5 приложения Г, так как они близки по свойствам к пескам магматических кварцесодержащих пород.

6.5.15 Расчет оснований, сложенных элювиальными грунтами, должен производиться в соответствии с требованиями раздела 5. Если элювиальные грунты являются просадочными или набухающими, следует учитывать требования подразделов 6.1 и 6.2.

6.5.16 Расчетные сопротивления R дисперсных элювиальных грунтов при расчетах оснований по деформациям определяют согласно требованиям подраздела 5.5.

Расчетные сопротивления R_0 для назначения предварительных размеров фундаментов сооружений I и II уровней ответственности и окончательных размеров сооружений III уровня ответственности приведены в таблицах Д.6-Д.8 приложения Д, при этом значения R_0 для крупнообломочных грунтов (таблица Д.6) допускается применять и для сооружений II уровня ответственности.

6.5.17 При расчетных деформациях основания, сложенного элювиальными грунтами, больше предельных или недостаточной несущей способности основания должны предусматриваться следующие мероприятия в соответствии с подразделом 5.8:

- устройство уплотненных грунтовых распределительных подушек из песка, гравия, щебня или крупнообломочных грунтов с обломками исходных горных пород, в частности при неровной поверхности скальных грунтов;

- удаление из верхней зоны основания включений скальных грунтов, полная или частичная замена рыхлого заполнения "карманов" и "гнезд" выветривания в скальных грунтах щебнем, гравием или песком с уплотнением.

В случае недостаточности этих мероприятий следует предусматривать применение свайных фундаментов, способа выравнивания осадок основания или конструктивных мероприятий в соответствии с требованиями подраздела 5.8.

6.5.18 В проекте оснований и фундаментов должна предусматриваться защита элювиальных грунтов от разрушения атмосферными воздействиями и водой в период устройства котлованов. Для этой цели следует применять водозащитные мероприятия, не допускать перерывы в устройстве оснований и последующем возведении фундаментов; предусматривать недобор грунта в котловане; применять взрывной способ разработки скальных грунтов лишь при условии мелкошпуровой отпалки.

6.6 Насыпные грунты

6.6.1 Основания, сложенные насыпными грунтами, должны проектироваться с учетом их неоднородности по составу, неравномерной сжимаемости и возможности самоуплотнения, особенно при вибрационных воздействиях, замачивании, а также за счет разложения органических включений.

Примечание - В насыпных грунтах, состоящих из шлаков и глин, необходимо учитывать возможность их набухания при замачивании водой или химическими отходами производств.

6.6.2 В зависимости от состава и характера происхождения различают насыпные грунты, отходы производств и бытовые отходы.

Насыпные грунты состоят из минералов природного происхождения, первоначальная структура которых изменена в результате разработки и вторичной укладки. К ним относятся: нарушенные природные грунты, вскрышные породы, хвосты обогатительных фабрик.

Отходы производств представляют собой искусственные материалы, образовавшиеся в результате термической или химической обработки природных материалов. К ним относятся: шлаки, золы, золошлаки, шламы.

Бытовые отходы состоят из бытового и строительного мусора с примесями грунтов различного состава.

6.6.3 Насыпные грунты и отходы производств подвержены процессу самоуплотнения, продолжительность которого в зависимости от гранулометрического состава и способа отсыпки приведена в таблице 6.9. По истечении времени, указанного в таблице, насыпные грунты и отходы производств относятся к слежавшимся.

Примечания

1 Планомерно возведенные насыпи выполняют из однородных грунтов и отходов производств путем отсыпки или намыва с уплотнением до заданной плотности сложения.

2 Отвалы формируют путем отсыпки без уплотнения различных видов грунтов, полученных при отрывке котлованов, производстве вскрышных работ, проходке подземных выработок и т.п., а также хвостов обогатительных фабрик и отходов производств.

3 Свалки грунтов, отходов производств и бытовых отходов представляют собой отсыпки, образовавшиеся в результате неорганизованного накопления различных материалов.

Таблица 6.9

Виды насыпных грунтов и отходов производств Продолжительность самоуплотнения, год
планомерно возведенных насыпей отвалов свалок
Крупнообломочные 0,2-1 1-3 2-5
Песчаные 0,5-1 2-5 5-10
Глинистые 2-5 10-15 20-30

6.6.4 В качестве естественных оснований рекомендуется использовать:

- планомерно возведенные насыпи из грунтов и отходов производств;

- отвалы грунтов и отходов производств, состоящие из щебенистых и гравийных грунтов, крупных песков и шлаков.

Свалки грунтов и отходов производств допускается использовать для строительства сооружений III уровня ответственности при проведении расчета по деформациям. Использование свалок бытовых отходов в качестве естественных оснований не допускается.

6.6.5 Неравномерность сжимаемости насыпных грунтов должна определяться по результатам полевых и лабораторных исследований, выполняемых с учетом состава и сложения насыпных грунтов, способа отсыпки, вида материала, составляющего основную часть насыпи. Модуль деформации насыпных грунтов, как правило, должен определяться на основе штамповых испытаний.

6.6.6 Дополнительные осадки фундаментов за счет разложения органических включений учитывают в пределах слоев, расположенных выше уровня подземных вод, при относительном содержании по массе органических веществ в насыпях из песков, хвостов обогатительных фабрик и шлаков более 0,03, а из глинистых грунтов и золошлаков - более 0,05.

6.6.7 Дополнительные осадки, их неравномерность и время развития за счет уплотнения подстилающих грунтов от веса насыпи определяются толщиной слоя насыпных грунтов, а также сжимаемостью и условиями консолидации подстилающих насыпь грунтов.

Примечание - Допускается принимать, что уплотнение подстилающих грунтов от веса насыпи практически заканчивается для грунтов: песков - через 1 год, глинистых, расположенных выше уровня подземных вод, - через 2 года, а находящихся ниже уровня подземных вод - через 5 лет.

6.6.8 Инженерно-геологические изыскания насыпных грунтов предусматривают в дополнение к общим требованиям изучение их состава, способа и давности отсыпки, толщины насыпи и ее изменение на застраиваемом участке, степени изменчивости сжимаемости. При исследовании отходов производств необходимо изучить технологию их образования, химический состав и характерные особенности: склонность к распаду, загрязнение токсичными веществами, наличие органических включений, выделение газов и т.п.

6.6.9 При проведении изысканий кроме бурения необходимо предусматривать проходку шурфов для отбора монолитов для лабораторных исследований и проведения испытаний грунтов штампами (см. 6.6.11).

Для изучения плотности сложения, степени изменчивости сжимаемости, выявления крупных пустот, установления необходимой глубины погружения свай необходимо использовать зондирование (ГОСТ 19912) и геофизические методы исследований.

6.6.10 Скважины бурят на глубину, превышающую глубину насыпного слоя не менее чем на 5 м. Расстояния между скважинами принимают не более: для планомерно возведенных насыпей - 50 м; отвалов - 40 м; свалок - 30 м.

Шурфы проходят на всю толщину насыпного слоя. Расстояния между шурфами принимают не более: для планомерно возведенных насыпей - 100 м; отвалов - 60 м; свалок - 40 м. Монолиты для лабораторных испытаний отбирают через 1-2 м по глубине.

Расстояния между зондировочными скважинами принимают не более: для планомерно возведенных насыпей - 50 м; отвалов - 20 м; свалок - 15 м.

6.6.11 Для сооружений I и II уровней ответственности сжимаемость всех видов насыпных грунтов и отходов производств необходимо определять в полевых условиях статическими нагрузками в соответствии с ГОСТ 20276.

Число испытаний штампами в пределах проектируемого сооружения принимают не менее: для планомерно возведенных насыпей 2; для отвалов - 3.

6.6.12 При использовании насыпных грунтов и отходов производств для устройства искусственных оснований, насыпей, подсыпок под полы, обратных засыпок котлованов и т.п. для назначения проектной плотности и диапазона изменения влажности необходимо предусматривать испытания грунтов по ГОСТ 22733.

6.6.13 Основания, сложенные насыпными грунтами и отходами производств, должны рассчитываться в соответствии с требованиями раздела 5. Если насыпные грунты являются просадочными, набухающими или имеют относительное содержание органического вещества I_om > 0,1, следует учитывать соответственно требования подразделов 6.1, 6.2 и 6.4. Полная деформация основания должна определяться суммированием осадок основания от внешней нагрузки и дополнительных осадок от самоуплотнения насыпных грунтов и разложения органических включений, а также осадок (просадок) подстилающих грунтов от веса насыпи и нагрузок от фундамента.

6.6.14 Для учета самоуплотнения неслежавшихся насыпных грунтов и отходов производств к значениям дополнительного вертикального напряжения от внешней нагрузки _zp по 5.5.32 в пределах насыпного слоя добавляют вертикальное напряжение от собственного веса грунта, равное произведению k_ss _zg, где k_ss = 0,4 - для неслежавшихся насыпей из песков (кроме пылеватых), шлаков и т.п. и k_ss = 0,6 - из пылеватых песков, глинистых грунтов, золошлаков и т.п.

При расчете осадок фундаментов учитывают осадку подстилающих грунтов от веса насыпи путем добавления к значениям _zp ниже кровли подстилающих грунтов вертикального напряжения от веса вышележащих слоев.

Примечание - Допускается не учитывать дополнительную осадку подстилающих грунтов при давности отсыпки насыпей из песков и шлаков более двух лет и из глинистых грунтов, хвостов обогатительных фабрик, зол, золошлаков и шламов - пяти лет.

6.6.15 Расчетное сопротивление основания R, сложенного насыпными грунтами и отходами производств, определяют в соответствии с требованиями подраздела 5.5.

При определении расчетных сопротивлений грунтов по формуле (5.5) значения коэффициентов _с1 и _с2 принимают равными для планомерно возведенных насыпей по таблице 5.2; отвалов - _с1 = 0,8 и _с2 = 0,9; свалок - _с1 = 0,6 и _с2 = 0,7.

Предварительные размеры фундаментов сооружений I и II уровней ответственности, возводимых на слежавшихся насыпных грунтах, допускается назначать исходя из значений расчетных сопротивлений грунтов R_0 основания по таблице Д.9 приложения Д. Эти значения R_0 допускается использовать также для назначения окончательных размеров фундаментов сооружений III уровня ответственности.

6.6.16 При проведении уплотнения, устройстве песчаных, гравийных и т.п. подушек расчетные сопротивления R_0 уточняют из условия, чтобы полное вертикальное напряжение от нагрузки на фундамент и от собственного веса уплотненного грунта на подстилающие насыпные (неуплотненные) или природные грунты не превышало расчетные сопротивления этих грунтов в соответствии с требованиями 5.5.25.

6.6.17 При расчетных деформациях основания, сложенного насыпными грунтами, больше предельных или недостаточной несущей способности основания должны предусматриваться следующие мероприятия в соответствии с требованиями подраздела 5.8:

- поверхностное уплотнение оснований тяжелыми трамбовками, вибрационными машинами, катками;

- глубинное уплотнение грунтовыми сваями, гидровиброуплотнение;

- устройство грунтовых подушек;

- прорезка насыпных грунтов фундаментами, в том числе свайными;

- конструктивные мероприятия.

6.6.18 В проекте основания, уплотняемого тяжелыми трамбовками, должны быть указаны:

- размеры уплотняемой площади и глубина уплотнения;

- параметры трамбования (масса и диаметр трамбовки, высота сбрасывания, число ударов);

- величина недобора грунта до проектной отметки заложения фундаментов (понижение уплотняемой поверхности);

- плотность уплотненного грунта и оптимальная влажность.

6.6.19 Вибрационные машины и катки используют при уплотнении на глубину до 1,5 м и для уплотнения отдельных слоев при возведении насыпей из грунтов и отходов производств, имеющих степень влажности S_r 0,7.

6.6.20 Гидровиброуплотнение применяют для уплотнения на глубину до 6 м насыпных грунтов и отходов производств (хвостов, формовочной земли, золошлаков) с содержанием по массе глинистых частиц не более 0,05 и степени влажности S_r > 0,7 .

6.6.21 Грунтовые подушки применяют при замене сильно- и неравномерно сжимаемых насыпных грунтов. Они могут устраиваться как из природных грунтов (щебеночных, гравийных, песчаных и т.п.), так и из отходов производств (шлаков, золошлаков).

Плотность подушек назначают в зависимости от вида применяемых грунтов и отходов производств и уровня ответственности сооружения.

6.6.22 Модули деформации подушек и основания из насыпных грунтов, уплотненных тяжелыми трамбовками, вибрационными машинами, катками и гидровиброметодом принимают по результатам полевых испытаний статическими нагрузками.

6.6.23 Конструктивные мероприятия при строительстве сооружений на насыпных грунтах и отходах производств применяют в соответствии с подразделом 5.8.

6.7 Намывные грунты

6.7.1 Основания, сложенные намывными грунтами, должны проектироваться с учетом их неоднородности (многослойности, изменчивости состава и свойств в плане и по глубине), способности изменять физико-механические свойства со временем (в том числе за счет колебаний уровня подземных вод), чувствительности к вибрационным воздействиям.

В качестве намывных грунтов применяют пески различной крупности.

6.7.2 Проектирование оснований и фундаментов должно производиться по результатам инженерно-геологических изысканий, выполненных не ранее, чем через три месяца после окончания намыва песков.

6.7.3 Прочностные и деформационные характеристики намывных грунтов, как правило, должны устанавливаться по результатам полевых и лабораторных исследований грунтов ненарушенного сложения с учетом возраста намывного грунта, т.е. времени, прошедшего от окончания намыва до начала строительства.

6.7.4 Для предварительных расчетов оснований сооружений I и II уровней ответственности, а также окончательных расчетов оснований сооружений III уровня ответственности допускается пользоваться значениями прочностных и деформационных характеристик грунтов, полученными по их физическим характеристикам в зависимости от возраста намывных грунтов.

6.7.5 Расчет оснований, сложенных намывными грунтами, должен производиться в соответствии с требованиями раздела 5.

Если толща намывных грунтов подстилается водонасыщенными органо-минеральными или органическими грунтами или илами, в расчетах оснований следует дополнительно учитывать требования подраздела 6.4.

6.7.6 Расчетное сопротивления R намывных грунтов определяют в соответствии с требованиями подраздела 5.5, при этом значения прочностных характеристик намывного грунта следует принимать соответствующими началу строительства с учетом 6.7.2 и 6.7.3.

6.7.7 Полная деформация основания, сложенного намывными грунтами, должна определяться суммированием осадок основания от внешней нагрузки, самоуплотнения толщи намывных грунтов и дополнительных осадок загруженных намывом подстилающих слоев грунта с учетом их консолидации.

6.7.8 Расчет осадки намывного основания при толщине намывного слоя не менее 4b (где b - ширина фундамента) и при отношении площади фундаментов к площади застройки сооружения больше 0,3 следует проводить от нагрузки, распределенной по площади застройки и полученной путем деления массы сооружения на площадь, ограниченную контуром наружных граней фундаментов.

6.7.9 При расчетных деформациях основания, сложенного намывными грунтами, больше предельных или недостаточной несущей способности основания в соответствии с указаниями подраздела 5.8 должны предусматриваться:

- уплотнение намывных грунтов (вибрационными машинами и катками, глубинным гидровиброуплотнением, использованием энергии взрыва, трамбованием, избыточным намывом грунта на площади застройки и др.);

- закрепление или армирование намывного грунта;

- конструктивные мероприятия.

6.7.10 Отметку заложения подошвы фундаментов принимают независимо от глубины сезонного промерзания грунтов, если в основании сооружения залегает толща намывных песков гравелистых, крупных и средней крупности, а также мелких, если специальными исследованиями на данной площадке установлено, что они не обладают пучинистыми свойствами.

6.7.11 При проектировании намывных работ необходимо так размещать дамбы обвалования, ограждающие карты намыва, чтобы они не пересекали контуры и не служили основанием сооружений, что может привести к развитию больших неравномерных осадок.

6.8 Пучинистые грунты

6.8.1 Основания, сложенные пучинистыми грунтами, должны проектироваться с учетом способности таких грунтов при сезонном или многолетнем промерзании увеличиваться в объеме, что сопровождается подъемом поверхности грунта и развитием сил морозного пучения, действующих на фундаменты и другие конструкции сооружений. При последующем оттаивании пучинистого грунта происходит его осадка.

6.8.2 К пучинистым грунтам относятся глинистые грунты, пески пылеватые и мелкие, а также крупнообломочные грунты с глинистым заполнителем, имеющие к началу промерзания влажность выше определенного уровня. При проектировании оснований, сложенных пучинистыми грунтами, следует учитывать возможность повышения влажности грунта за счет подъема уровня подземных вод, инфильтрации подземных вод и экранирования поверхности.

6.8.3 Пучинистые грунты характеризуются:

- абсолютной деформацией морозного пучения h_f, представляющей подъем ненагруженной поверхности промерзающего грунта;

- относительной деформацией (интенсивностью) морозного пучения _fh - отношением h_f к толщине промерзающего слоя d_f;

- давлением морозного пучения _fh, действующим нормально к подошве фундамента;

- удельным значением _fh касательной силы морозного пучения, действующей вдоль боковой поверхности фундамента.

Указанные характеристики, как правило, должны устанавливаться на основе опытных данных с учетом возможного изменения гидрогеологических условий. Для сооружений III уровня ответственности допускается определять значения _fh в зависимости от параметра R_f (рисунок 6.9), вычисляемого по формуле

(6.22)

где w, w_p - влажность в пределах слоя промерзающего грунта соответственно природная и на границе раскатывания, доли единицы;

w_sat - полная влагоемкость грунта, доли единицы;

_d - плотность сухого грунта, т/м3;

М_0 - абсолютное значение средней многолетней температуры воздуха за зимний период; определяют так же, как и коэффициент Mt (см. формулу (12.1)).

6.8.4 По степени пучинистости грунты подразделяют в зависимости от _fh на пять групп (ГОСТ 25100). Принадлежность глинистого грунта к одной из групп также может быть оценена по параметру R_f (рисунок 6.9).

6.8.5 Расчет оснований, сложенных пучинистыми грунтами, должен выполняться в соответствии с рекомендациями раздела 5 и предусматривать проверку устойчивости фундаментов при действии сил морозного пучения.

6.8.6 Расчет устойчивости фундаментов на воздействие касательных сил морозного пучения, действующих вдоль боковой поверхности фундаментов, должен выполняться при заложении подошвы фундаментов ниже расчетной глубины промерзания пучинистых грунтов.

Устойчивость фундаментов проверяют по формуле

(6.23)

где _fh- значение расчетной удельной касательной силы пучения, кПа, принимаемое по 6.8.7;

A_fh- площадь боковой поверхности фундамента, находящейся в пределах расчетной глубины сезонного промерзания, м2;

F - расчетная постоянная нагрузка, кН, при коэффициенте надежности по нагрузке _f = 0,9;

F_rf - расчетное значение силы, кН, удерживающей фундамент от выпучивания вследствие трения его боковой поверхности о талый грунт, лежащий ниже расчетной глубины промерзания;

_с - коэффициент условий работы, принимаемый равным 1,1;

_n- коэффициент надежности, принимаемый равным 1,1.

1, 2 - супеси; 3 - суглинки; 4 - суглинки с 0,07 < I_р 0,13; 5 - суглинки с 0,13 < I_р 0,17; 6 - глины (в грунтах 2,4 и 5 содержание пылеватых частиц размером 0,05-0,005 мм составляет более 50% по массе); а - практически непучинистый; б - слабопучинистый; в - среднепучинистый;
г - сильнопучинистый; д - чрезмернопучинистый

Рисунок 6.9 - Взаимосвязь параметра R_f и относительной деформации пучения _fh

6.8.7 Значение расчетной удельной касательной силы пучения _fh должно определяться, как правило, опытным путем. При отсутствии опытных данных допускается принимать значения _fh по таблице 6.10 в зависимости от вида и характеристик грунта.

6.8.8 Расчетное значение силы F_rf, кН, для фундаментов, имеющих вертикальные грани, определяют по формуле

(6.24)

где R_fj- расчетное сопротивление талых грунтов сдвигу по боковой поверхности фундамента в j-м слое, кПа; допускается применять в соответствии с нормативными документами по проектированию свайных фундаментов;

А_fj- площадь вертикальной поверхности сдвига в j-м слое грунта ниже расчетной глубины промерзания, м2;

п - число слоев грунта.

Таблица 6.10

Грунты и их характеристики Значения расчетной удельной касательной силы пучения _fh, кПа, при глубине сезонного промерзания грунта, м
до 1,5 2,5 3 и более
Супеси, суглинки и глины при показателе текучести I_L > 0,5; крупнообломочные грунты с глинистым заполнителем, пески мелкие и пылеватые при показателе дисперсности D > 5 и степени влажности S_r > 0,95 110 90 70
Супеси, суглинки и глины при 0,25 < I_L 0,5; крупнообломочные грунты с глинистым заполнителем, пески мелкие и пылеватые при D > 1 и 0,8 < S_r 0,95 90 70 55
Супеси, суглинки и глины при I_L < 0,25; крупнообломочные грунты с глинистым заполнителем, пески мелкие и пылеватые при D > 1 и степени влажности 0,6 < S_r < 0,8 70 55 40

Примечания

1 Для промежуточных глубин промерзания значения _fh принимают интерполяцией.

2 Значения _fh для грунтов, используемых при обратной засыпке котлованов, принимают по первой строке таблицы.

3 В зависимости от вида поверхности фундамента приведенные значения _fh, умножают на коэффициент: при гладкой бетонной необработанной - 1; при шероховатой бетонной с выступами и кавернами до 5 мм - 1,1-1,2, до 20 мм - 1,25-1,5; при деревянной антисептированной - 0,9; при металлической без специальной обработки - 0,8.

4 Для сооружений III уровня ответственности значения _fh умножают на коэффициент 0,9.

6.8.9 При заложении фундаментов выше расчетной глубины промерзания пучинистых грунтов (малозаглубленные фундаменты) необходимо производить расчет по деформациям морозного пучения грунтов основания с учетом касательных и нормальных сил морозного пучения.

Примечание - Малозаглубленные фундаменты допускается применять для сооружений III уровня ответственности и малоэтажных зданий (раздел 8) при нормативной глубине промерзания не более 1,7 м.

6.8.10 Расчетные деформации морозного пучения грунтов основания, определяемые с учетом нагрузки от сооружения, не должны превышать предельных значений, которые допускается принимать как для набухающих грунтов (приложение Е).

6.8.11 Если расчетные деформации морозного пучения основания малозаглубленных фундаментов больше предельных или устойчивость фундаментов на действие сил морозного пучения недостаточна, кроме возможности изменения глубины заложения фундаментов, следует рассмотреть необходимость применения мероприятий, уменьшающих силы и деформации морозного пучения, а также глубину промерзания в соответствии с подразделом 5.8 (водозащитные, теплозащитные или физико-химические).

Если при применении указанных мероприятий деформации морозного пучения не исключены, следует предусматривать конструктивные мероприятия, назначаемые исходя из расчета фундаментов и конструкций сооружения с учетом возможных деформаций морозного пучения.

В проекте оснований и фундаментов должны предусматриваться мероприятия, не допускающие увлажнения пучинистых грунтов основания, а также промораживания их в период строительства.

6.9 Закрепленные грунты

6.9.1 Закрепление грунтов производят в целях повышения их прочности и водонепроницаемости в основании строящихся или существующих сооружений.

Возможность и способ закрепления грунтов в основании существующих сооружений должны устанавливаться с учетом характера деформаций оснований и состояния конструкций сооружения (приложение В).

Массивы из закрепленного грунта (закрепленные массивы) могут быть использованы в качестве фундаментов и других заглубленных конструкций.

6.9.2 Для устройства закрепленных массивов в зависимости от их назначения и грунтовых условий применяют следующие способы:

- инъекционный, осуществляемый путем нагнетания в грунт химических или цементационных растворов с помощью инъекторов или в скважины (смолизация, силикатизация, цементация);

- буросмесительный (путем разработки и перемешивания грунта с цементом или цементными растворами в скважинах);

- термический (путем нагнетания в скважины высокотемпературных газов или с помощью электронагрева грунта).

Способ закрепления и рецептура растворов должны обеспечивать необходимые расчетные физико-механические характеристики закрепленного грунта и удовлетворять требованиям по охране окружающей среды.

6.9.3 Инъекционные способы закрепления грунтов следует применять в следующих грунтовых условиях:

- силикатизацию и смолизацию - в песках с коэффициентом фильтрации k - 0,5 k 80 м/сут;

- силикатизацию в просадочных грунтах при k > 0,2 м/сут и степени влажности S_r 0,7;

- цементацию - в трещиноватых скальных грунтах с удельным водопоглощением не менее 0,01 л/мин·м2; в крупнообломочных грунтах при k 40 м/сут, а также для заполнения карстовых полостей и закрепления закарстованных пород.

6.9.4 Буросмесительный способ следует применять для закрепления илов независимо от их коэффициента фильтрации (в том числе при наличии слоев глин и суглинков с показателем текучести I_L > 0,5 или песков рыхлых и средней плотности), а также лессовых просадочных грунтов с числом пластичности от 0,02 до 0,15 в грунтовых условиях I типа по просадочности.

Применение буросмесительного способа закрепления грунтов допускается для сооружений III уровня ответственности.

6.9.5 Термический способ следует применять для закрепления лессовых просадочных грунтов со степенью влажности S_r 0,5.

6.9.6 Для силикатизации и смолизации используют в качестве крепителей водные растворы силиката натрия, карбамидные и другие синтетические смолы, в качестве отвердителей - неорганические или органические кислоты и соли, а также газы. Для регулирования процессов гелеобразования или предварительной обработки закрепленного грунта применяют рецептурные добавки.

6.9.7 Для цементации грунтов следует применять цементационные растворы (цементные, цементно-песчаные, цементно-глинистые, цементно-песчано-глинистые и др.), а также поризованные и вспененные растворы при необходимости с химическими добавками.

При наличии агрессивных подземных вод надлежит применять стойкие по отношению к ним цементы.

6.9.8 Рецептуры растворов для инъекционных и буросмесительных способов закрепления грунтов и физико-механические характеристики закрепленных грунтов должны уточняться по результатам их закрепления в лабораторных или полевых условиях.

6.9.9 Форму и размеры закрепленных массивов, а также физико-механические характеристики закрепленных грунтов следует устанавливать исходя из инженерно-геологических и гидрогеологических условий площадки, принятого способа и технологии работ по закреплению грунтов, а также результатов расчета оснований в соответствии с требованиями раздела 5 с учетом взаимодействия закрепленного массива с окружающим грунтом.

При наличии в основании специфических грунтов (например, просадочных) следует учитывать дополнительно требования соответствующих разделов настоящего СП.

Основания, усиленные отдельными закрепленными массивами (столбами) диаметром от 0,6 до 1,0 м, должны проектироваться в соответствии с нормативными документами по свайным фундаментам.

6.9.10 При проектировании закрепления грунтов рекомендуется привлекать специализированные организации для решения вопросов о способе закрепления, составе растворов, о прочностных и деформационных свойствах закрепленных грунтов.

6.9.11 Материалы инженерно-геологических изысканий и лабораторных исследований помимо характеристик, указанных в 5.1.8, должны содержать данные о гранулометрическом составе и коэффициенте фильтрации грунта, химическом составе водных вытяжек грунтовых вод, а для закрепленных грунтов - о прочностных и деформационных характеристиках (_3, с_3, R_3, E_3).

6.9.12 Проектирование закрепления грунтов производят в следующей последовательности:

- на основании материалов изысканий и лабораторных исследований назначают способ закрепления грунтов, прочностные и деформационные характеристики закрепленного грунта. Допускается значения (_3, с_3, E_3 песков принимать по таблице 6.11 в зависимости от прочности закрепленного грунта на одноосное сжатие R_3;

- выбирают конструктивную схему закрепления грунтов основания: а) сплошное закрепление на заданную глубину; б) армирование грунтов основания отдельными опорами из закрепленного грунта; в) комбинированная схема, предусматривающая сверху сплошное закрепление, а ниже - из отдельных опор;

- назначают предварительные геометрические размеры закрепленного грунта в плане и по глубине. Минимальный вынос закрепления за контуры фундамента принимают по таблице 6.12 в зависимости от расчетного давления под подошвой фундамента и значения R3;

- производят расчет закрепленного основания по предельным состояниям в соответствии с разделом 5. По результатам расчета производят корректировку геометрических размеров закрепленного грунта;

- назначают радиус закрепления грунта от инъектора (скважины) в зависимости от коэффициента фильтрации по таблице 6.13;

- назначают схему расположения инъекторов (скважин) в плане и по глубине, обеспечивающую создание массива требуемой формы и размеров;

- определяют потребные объемы закрепляющих реагентов на одну заходку инъектора (захватку скважины) и на весь объем закрепления;

- назначают последовательность обработки инъекторов (скважин) и режим инъекции (давление, скорость инъекции), позволяющие обеспечить требуемую форму, размеры и прочность закрепленного грунта.

Таблица 6.11

Способы закрепления Характеристики грунта Средние значения характеристик закрепленных песков при их прочности R_3, МПа
0,5 1,0 2,0 3,0 4,0 5,0
Силикатизация двухрастворная с_3, МПа 0,10 0,2 0,54 0,65 0,85 1,03
_3, град. 40 41 43 45 47 49
E_3, МПа 42 80 162 240 330 415
Силикатизация однорастворная с H2SiF6 с_3, МПа 0,10 0,21 0,55 - - -
_3, град. 40 41 44 - - -
E_3, МПа 42 82 165 - - -
Силикатизация газовая с_3, МПа 0,10 0,2 - - - -
_3, град. 39 40 - - - -
E_3, МПа 38 76 - - - -
Смолизация с_3, МПа 0,10 0,2 0,50 0,59 0,73 0,96
_3, град. 39 41 42 44 45 47
E_3, МПа 38 78 148 215 285 375

Таблица 6.12

Расчетное давление под подошвой фундамента, МПа Минимальный вынос закрепления за контур фундамента, м, при прочности закрепленного грунта R_3, МПа
0,5 1,0 2,0 3,0 4,0 5,0
0,2 0,3 0,25 0,20 0,15 0,1 0,05
0,4 0,45 0,35 0,25 0,15 0,15 0,10
0,6 - 0,45 0,35 0,25 0,20 0,15
0,8 - - 0,5 0,35 0,25 0,20
1,0 - - - 0,5 0,3 0,2

Таблица 6.13

Способ закрепления Вид грунта Коэффициент фильтрации, м/сут Радиус закрепления грунта, м
Силикатизация двухрастворная Пески От 5 до 10 От 0,3 до 0,4
Св. 10 -"- 20 Св. 0,4 -"- 0,6
-"- 20 -"- 50 -"- 0,6 -"- 0,8
-"- 50 -"- 80 -"- 0,8 -"- 1,0
Силикатизация однорастворная с H2SiF6 -"- От 0,5 до 1 От 0,4 до 0,6
Св. 1 -"- 2 Св. 0,6 -"- 0,8
Силикатизация газовая -"- 2 -"- 5 -"- 0,8 -"- 1,0
Силикатизация однорастворная однокомпонентная Просадочный лессовый грунт От 0,2 до 0,3 От 0,4 до 0,7
Св. 0,3 -"- 0,5 Св. 0,7 -"- 0,8
-"- 0,5 -"- 2 -"- 0,8 -"- 1,0
Смолизация однорастворная двухкомпонентная Пески От 0,5 до 1 От 0,3 до 0,5
Св. 1 -"- 5 Св. 0,5 -"- 0,65
-"- 5 -"- 10 -"- 0,65 -"- 0,85
-"- 10 -"- 20 -"- 0,85 -"- 0,95
-"- 20 -"- 50 -"- 0,95 -"- 1,0

6.9.13 Предельное давление нагнетания при закреплении грунтов инъекционными способами должно назначаться из условия исключения возможности разрывов сплошности закрепляемого грунта.

6.9.14 Последовательность создания закрепленного массива должна исключить возможность возникновения неравномерных осадок возводимого или существующих сооружений.

6.9.15 В проекте следует предусматривать на первоначальном этапе производства работ контроль соответствия физических параметров закрепленного грунта проектным.

6.10 Особенности проектирования оснований сооружений, возводимых на подрабатываемых территориях

6.10.1 Основания сооружений, возводимых на подрабатываемых территориях, должны проектироваться с учетом неравномерного оседания земной поверхности, сопровождаемого горизонтальными деформациями сдвигающегося грунта в результате производства горных работ и перемещения грунта в выработанное пространство.

Параметры деформаций земной поверхности, в том числе кривизна поверхности, ее наклоны и горизонтальные перемещения, а также вертикальные уступы должны определяться в соответствии с требованиями СНиП 2.01.09. Эти параметры должны учитываться при назначении расчетных значений характеристик грунта.

6.10.2 Результаты инженерно-геологических изысканий с учетом горно-геологического обоснования строительной площадки должны включать:

- оценку изменений геоморфологических и гидрогеологических условий участка застройки вследствие местного оседания земной поверхности (возможность образования провалов, активизации процесса сдвижения вследствие геологических нарушений, активизации оползневых процессов, изменения уровня подземных вод с учетом сезонных и многолетних перепадов, заболачивания территории и т.п.);

- оценку возможных изменений физико-механических свойств грунтов вследствие изменения геологических и гидрогеологических условий площадки;

- деформационные и прочностные характеристики грунтов, используемые при расчетах воздействий сдвигающегося грунта на заглубленные конструкции сооружений.

6.10.3 Расчетные значения прочностных и деформационных характеристик грунта для определения усилий, действующих на фундаменты в результате деформаций земной поверхности, следует принимать равными нормативным (_g = 1).

Значение модуля деформации грунта в горизонтальном направлении Е_h допускается принимать равным 0,5 для глинистых грунтов и 0,65 - для песков от значения модуля деформации грунта в вертикальном направлении Е.

6.10.4 Расчетные сопротивления грунтов основания R должны определяться в соответствии с подразделом 5.5. При этом коэффициент условий работы _с2 в формуле (5.5) для сооружений жесткой конструктивной схемы, имеющих поэтажные и фундаментный пояса с замкнутым контуром, следует принимать по таблице 6.14; в остальных случаях _с2 = 1.

6.10.5 Значения коэффициента _с2 > 1 по таблице 6.14 относят к сооружениям, в которых помимо поэтажных поясов предусмотрен также фундаментный пояс.

6.10.6 Для сооружений жесткой конструктивной схемы, для которых расчетные давления на основание приняты с коэффициентом _с2 > 1 ширина подошвы бетонных и железобетонных монолитных и сборных фундаментов должна быть не менее 0,4 м.

6.10.7 Краевое давление на грунт под подошвой фундаментов, в том числе плитных, должно определяться с учетом дополнительных моментов, вызываемых деформацией земной поверхности при подработке.

Краевое давление не должно превышать 1,4R, в угловой точке - 1,5R, а равнодействующая нагрузок не должна выходить за пределы ядра сечения подошвы фундамента.

6.10.8 Краевые давления на грунты основания плитных фундаментов сооружений башенного типа следует проверять с учетом наклона земной поверхности, ветровых нагрузок и возможного крена сооружений вследствие естественной неоднородности грунта основания.

Таблица 6.14

Грунты Коэффициент _с2 для сооружений с жесткой конструктивной схемой при отношении длины сооружения или отсека к его высоте L/H
L/H 4 4 > L/H > 2,5 2,5 L/H > 1,5 L/H 1,5
Крупнообломочные с песчаным заполнителем и пески, кроме мелких и пылеватых 1,4 1,7 2,1 2,5
Пески мелкие 1,3 1,6 1,9 2,2
Пески пылеватые 1,1 1,3 1,7 2,0
Крупнообломочные с глинистым заполнителем 1,0 1,0 1,1 1,2
Глинистые с показателем текучести I_L 0,5 1,0 1,0 1,1 1,2
То же, с показателем текучести I_L > 0,5 1,0 1,0 1,0 1,0

6.10.9 Расчет деформаций оснований допускается не производить в случаях, указанных в таблице 5.9, а также если конструкции сооружений проектируют с учетом неравномерного оседания земной поверхности.

На площадках, сложенных специфическими грунтами, конструкции сооружений должны проектироваться с учетом возможного совместного воздействия на них деформаций от подработок и указанных грунтов.

6.10.10 Для сооружений, возводимых на подрабатываемых территориях, должны применяться фундаменты следующих конструктивных схем:

- жесткой (плитные, ленточные с железобетонными поясами, столбчатые со связями-распорками между ними и т.п.);

- податливой (фундаменты с горизонтальными швами скольжения между отдельными элементами - первый тип податливости; фундаменты с вертикальными элементами, имеющими возможность наклоняться при горизонтальных перемещениях грунта - второй тип податливости);

- комбинированной (жесткие фундаменты, имеющие шов скольжения ниже уровня планировки или пола подвала).

Конструктивная схема фундамента должна приниматься в зависимости от расчетных деформаций земной поверхности, жесткости надфундаментных конструкций, деформативности грунтов оснований и пр.

Примечание - Для зданий повышенной этажности и башенного типа применение наклоняющихся фундаментов не допускается.

6.10.11 Фундаменты должны рассчитываться на нагрузки от воздействия относительных горизонтальных деформаций земной поверхности (растяжения и сжатия), вызывающих горизонтальные перемещения грунта в направлении как продольной, так и поперечной осей сооружений.

Для восприятия усилий от воздействия горизонтальных перемещений грунта должны устраиваться: в ленточных фундаментах - железобетонные пояса (в податливых фундаментах - над швом скольжения); в столбчатых (в необходимых случаях) - связи-распорки; в плитных и свайных фундаментах должно предусматриваться соответствующее усиление армирования плиты и ростверка.

6.10.12 Фундаменты жесткой конструктивной схемы на воздействие горизонтальных деформаций грунта должны рассчитываться на усилия, вызываемые следующими нагрузками:

- силами трения (сдвигающими силами) по подошве фундаментов продольных и примыкающих стен, а также по боковым поверхностям фундаментов от перемещения грунта;

- давлением перемещающегося грунта, действующим нормально к боковой поверхности фундаментов.

Усилия от сил трения (сдвигающих сил) по подошве фундаментов примыкающих стен и боковое давление грунта на эти фундаменты, а также заглубленные части стен должны передаваться на конструкции фундаментов, расположенные параллельно направлению рассматриваемого горизонтального перемещения грунта.

6.10.13 Фундаменты податливой конструктивной схемы на воздействие горизонтальных деформаций грунта должны рассчитываться на нагрузки и усилия в зависимости от типа податливости.

При первом типе податливости, когда фундаменты имеют возможность смещаться по шву скольжения, их следует рассчитывать на силы трения, возникающие в шве скольжения от сдвига фундаментов.

При втором типе податливости, когда фундаменты имеют возможность наклоняться, их следует рассчитывать на наклоны и возникающее нормальное давление грунта.

Податливые фундаменты второго типа, наклоняющиеся из плоскости стены, в ее плоскости могут работать как податливые фундаменты первого типа.

Усилия от сил трения по шву скольжения и бокового давления фундаментов примыкающих стен должны передаваться на конструкции фундаментов, расположенных параллельно направлению рассматриваемого горизонтального перемещения.

При перемещении наклоняющихся фундаментов должны предусматриваться меры по обеспечению местной устойчивости элементов фундаментов и общей устойчивости сооружения в целом.

6.10.14 При шарнирном сопряжении колонн каркаса с фундаментами и ригелем и отсутствии связей-распорок между фундаментами конструкции при воздействии горизонтальных деформаций работают по второму типу податливости.

Нагрузки на фундаменты с жесткой заделкой колонн при отсутствии связей-распорок между фундаментами определяют в зависимости от перемещения основания, заглубления фундаментов, жесткости колонн, прочностных и деформационных характеристик основания и грунта засыпки.

6.10.15 На площадках, сложенных грунтами с модулем деформации Е < 10 МПа, а также при возможности резкого ухудшения строительных свойств грунтов основания вследствие изменения гидрогеологических условий площадки при подработке рекомендуется принимать свайные или плитные фундаменты.

Если в верхней зоне основания залегают слои ограниченной толщины насыпных, просадочных и других специфических грунтов, следует предусматривать прорезку этих слоев фундаментами.

6.10.16 К основным мероприятиям, снижающим неблагоприятное воздействие деформаций земной поверхности на фундаменты и конструкции сооружений, относятся:

а) уменьшение поверхности фундаментов, имеющей контакт с грунтом;

б) заложение фундаментного пояса на одном уровне в пределах отсека сооружения;

в) устройство грунтовых подушек на основаниях, сложенных практически несжимаемыми грунтами;

г) размещение подвалов и технических подполий под всей площадью отсека сооружения;

д) засыпка грунтом пазух котлованов и выполнение грунтовых подушек из материалов, обладающих малым сцеплением и трением на контакте с поверхностью фундаментов;

е) отрывка перед подработкой временных компенсационных траншей по периметру сооружения;

ж) разрезка зданий на отсеки.

6.10.17 Основным конструктивным мероприятием, снижающим неблагоприятное воздействие деформаций земной поверхности на фундаменты и конструкции зданий и сооружений, является разрезка зданий на отсеки, благодаря которой снижаются значения перемещений.

6.10.18 При строительстве сооружений на территориях при возможности образования при подработке уступов выбор типа фундаментов и метода защиты сооружений должен зависеть от размеров уступов:

- при уступах до 2-3 см фундаменты могут приниматься как и для условий строительства на площадках с плавными деформациями земной поверхности, т.е. по жесткой или податливой (первого типа податливости) конструктивной схеме;

- при ожидаемых уступах более 3 см должна предусматриваться возможность выравнивания сооружения поддомкрачиванием или с помощью клиньев.

6.11 Особенности проектирования оснований сооружений, возводимых на закарстованных территориях

6.11.1 Основания сооружений, возводимых на закарстованных территориях, должны проектироваться с учетом возможности образования поверхностных карстовых деформаций - провалов и оседаний и особенностей развития карстовых процессов.

6.11.2 Карстовые деформации характеризуются средними и максимальными диаметрами карстовых провалов и оседаний, их средней глубиной, а для карстовых оседаний, кроме того, кривизной земной поверхности и наклоном краевых участков зоны оседания.

Параметры карстовых деформаций определяют расчетом с использованием вероятностно-статистических и (или) аналитических методов на основе анализа инженерно-геологических и гидрогеологических условий с учетом их возможных изменений за время эксплуатации сооружений.

6.11.3 При проектировании сооружений на закарстованных территориях следует предусматривать мероприятия, снижающие неблагоприятное воздействие карста на сооружения или исключающие возможность образования карстовых деформаций. К таким мероприятиям относятся:

- конструктивные и водозащитные;

- заполнение (тампонаж) карстовых полостей;

- прорезка закарстованных пород фундаментами, в том числе свайными;

- закрепление закарстованных пород и (или) вышележащих грунтов;

- исключение или ограничение неблагоприятных техногенных воздействий.

6.11.4 Выбор одного или комплекса мероприятий должен производиться с учетом видов возможных карстовых деформаций и их параметров, уровня ответственности и срока эксплуатации сооружения, его конструктивных и технологических особенностей.

Принятые мероприятия не должны приводить к активизации карстовых процессов на примыкающих территориях.

6.11.5 Для сооружений III уровня ответственности допускается ограничиваться проведением наблюдений за режимом подземных вод, развитием карстовых процессов, состоянием основания и сооружения.

6.11.6 Конструктивные мероприятия могут осуществляться по жесткой и податливой схемам в зависимости от вида сооружения и степени карстовой опасности.

Увеличение жесткости и прочности надфундаментной части сооружений осуществляется за счет применения железобетонных и армированных поясов, тяжей и горизонтальных монолитных диафрагм, усилением несущих элементов конструкций армированными обоймами и рубашками, введением дополнительных связей в каркасных конструкциях.

Увеличение податливости сооружений достигается устройством в подземной части швов скольжения, введением шарнирных и податливых связей между элементами конструкций, снижением жесткости несущих конструкций и др.

6.11.7 Основные конструктивные элементы противокарстовой защиты сооружений следует предусматривать в подземной части путем применения коробчатых фундаментов, плоских или ребристых плит, перекрестных ленточных фундаментов. Применение отдельно стоящих фундаментов не допускается.

Фундаменты должны выполняться из монолитного железобетона. При соответствующем обосновании допускается применение сборных ленточных фундаментов с монолитными железобетонными поясами.

6.11.8 Для обеспечения необходимой прочности возможно применение консольных удлинений фундаментов за пределы сооружений. Длину консоли определяют в зависимости от конструктивных решений фундаментов сооружения, а также параметров расчетного карстового провала.

6.11.9 Применение висячих свай в качестве противокарстового мероприятия не допускается. Такие сваи могут применяться при наличии в верхних слоях основания насыпных, органо-минеральных или органических грунтов. При этом следует принимать плитный или ленточный ростверк, объединяющий сваи. Узел сопряжения свай с ростверком должен предусматривать возможность их выскальзывания, чтобы исключить дополнительное нагружение основания зависающими сваями, находящимися на участке образовавшегося провала под фундаментом.

6.11.10 При неглубоком залегании карстующихся грунтов допускается возводить сооружения на сваях, прорезающих эти грунты и заглубленных в ненарушенные грунты на глубину не менее 2 м.

При расчете свай необходимо учитывать дополнительные усилия, возникающие при перемещении обрушающихся грунтов надкарстовой толщи.

6.11.11 Основным расчетным параметром при проектировании противокарстовой защиты сооружений при карстовых провалах является расчетный диаметр карстового провала. Его определение производят с учетом физико-механических характеристик грунтов основания и нагрузки, передаваемой от сооружения на основание.

Основанием сооружений, возводимых на закарстованных территориях, принимают толщу грунтов, глубина которой не менее глубины сжимаемой толщи, и глубины расположения форм подземного карста, которые могут проявиться на земной поверхности.

6.11.12 При карстовых деформациях в виде оседания поверхности рекомендуется применять методику расчета сооружений на подрабатываемых территориях (подраздел 6.10) с учетом специфики карстовых деформаций, связанной с механизмом их проявления и продолжительностью.

6.11.13 При расчете фундаментов положение возможных карстовых провалов под сооружением принимают исходя из наиболее неблагоприятного их влияния на работу сооружения. При этом обязательным является расчетное положение провала под колоннами, пересечениями стен, углами сооружений, в середине большей и меньшей сторон.

6.11.14 Расчет оснований сооружений, возводимых на закарстованных территориях, должен производиться в соответствии с требованиями раздела 5.

При наличии в основании сооружений грунтов со специфическими свойствами (просадочных, набухающих и др.), залегающих над закарстованными грунтами, следует учитывать требования соответствующих разделов настоящего СП.

6.11.15 При необходимости усиления оснований и фундаментов существующих сооружений следует предусматривать:

- объединение отдельных фундаментов в пространственно-рамные конструкции;

- устройство консольных выступов, поясов жесткости и т.д.

- закрепление грунтов основания;

- заполнение (тампонаж) образовавшихся провалов.

6.12 Особенности проектирования оснований сооружений, возводимых в сейсмических районах

6.12.1 Основания сооружений, возводимых на площадках сейсмичностью 7, 8 и 9 баллов, должны проектироваться с учетом требований СНиП II-7.

В районах сейсмичностью менее 7 баллов основания следует проектировать без учета сейсмических воздействий.

Примечание - При проектировании в сейсмических районах в дополнение к материалам инженерно-геологических изысканий необходимо использовать данные сейсмического микрорайонирования площадки строительства.

6.12.2 Проектирование оснований с учетом сейсмических воздействий должно выполняться на основе расчета по несущей способности на особое сочетание нагрузок, определяемых в соответствии с требованиями СНиП 2.01.07, а также СНиП II-7.

Предварительные размеры фундаментов допускается определять расчетом оснований по деформациям на основное сочетание нагрузок (без учета сейсмических воздействий) согласно требованиям подраздела 5.5.

6.12.3 Расчет оснований по несущей способности выполняют на действие вертикальной составляющей внецентренной нагрузки, передаваемой фундаментом на грунт, исходя из условия

N_a _c,eq N_u,eq / _n, (6.25)

где N_a- вертикальная составляющая расчетной внецентренной нагрузки в особом сочетании, кН;

N_u,eq - вертикальная составляющая силы предельного сопротивления основания при одностороннем выпоре грунта вследствие сейсмического воздействия, кН;

_c,eq - сейсмический коэффициент условий работы, принимаемый равным 1,0; 0,8; 0,6 соответственно для грунтов I, II и III категорий по сейсмическим свойствам, которые определяют в соответствии с классификацией СНиП II-7;

_n - коэффициент надежности по назначению сооружения, принимаемый по указаниям 5.6.2.

Горизонтальную составляющую нагрузки F_sa, кН, учитывают при расчете фундамента на сдвиг по подошве площадью А, м2, исходя из условия

(6.26)

где _c,eq, _n и N_а - то же, что и в формуле (6.25);

_I и с_I - расчетные значения угла внутреннего трения и удельного сцепления;

- принимают в зависимости от расчетной сейсмичности:

7 баллов - = 2°, 8 баллов - = 4°, 9 баллов - = 7°.

6.12.4 При расчете несущей способности оснований, испытывающих сейсмические колебания, ординаты эпюры предельного давления р_0 и р_b, кПа, по краям подошвы фундамента (рисунок 6.10) определяют по формулам:

(6.27)
(6.28)

где _q, _c, _ - коэффициенты формы, определяемые по формулам (5.31), но без уменьшения длины l и ширины b подошвы фундамента на значения эксцентриситета нагрузок;

F_1, F_2 и F_3 - коэффициенты, определяемые по графикам рисунка 6.11 в зависимости от расчетного значения угла внутреннего трения _I;

'_I и _I - соответственно расчетные значения удельного веса грунта, кН/м3, находящегося выше и ниже подошвы фундамента (с учетом взвешивающего действия подземных вод для грунтов, находящихся выше водоупора);

d - глубина заложения фундамента, м, (в случае неодинаковой вертикальной пригрузки с разных сторон фундамента принимают значение, соответствующее наименьшей пригрузке, например, со стороны подвала);

k_eq - коэффициент, принимаемый равным 0,1; 0,2 и 0,4 при сейсмичности площадок строительства 7, 8 и 9 баллов соответственно.

Примечание - В формуле (6.28) при F_2 < k_eq F_3 следует принимать р_b равное р_0.

Рисунок 6.10 - Эпюра предельного давления под подошвой фундамента при сейсмическом воздействии

Рисунок 6.11 - Графики определения коэффициентов F_1, F_2 и F_3 для расчета несущей способности оснований в условиях сейсмических воздействий

Эксцентриситеты расчетной нагрузки е_а, м, и эпюры предельного давления е_u, м, определяют по формулам:

е_а = M_a/N_a, (6.29)
е_u = b(р_b - р_0)/6(р_b - р_0), (6.30)

где N_a и М_а - вертикальная составляющая расчетной нагрузки, кН, и момент, кН·м, приведенные к подошве фундамента при особом сочетании нагрузок;

р_0 и р_b - то же, что и в формулах (6.27) и (6.28).

В зависимости от соотношения между значениями е_а и е_u вертикальную составляющую силы предельного сопротивления основания N_u e , кН, принимают:

при е_а е_u N_u,eq = 0,5bl(р_b + р_0); (6.31)
при е_а > е_uN_u,eq = bl_b(1 + 6e_a / b). (6.32)

6.12.5 При действии моментов от нагрузок особого сочетания в двух направлениях расчет сейсмостойкости основания по несущей способности должен выполняться раздельно на действие сил и моментов в каждом направлении независимо друг от друга.

6.12.6 При расчете оснований и фундаментов на особое сочетание нагрузок с учетом сейсмических воздействий допускается частичный отрыв подошвы фундамента от грунта при выполнении следующих условий:

- эксцентриситет е_а расчетной нагрузки не превышает одной трети ширины фундамента b в плоскости действия опрокидывающего момента;

- силу предельного сопротивления основания определяют для условного фундамента, размер подошвы которого в направлении действия момента равен размеру сжатой зоны b_с = 1,5(b - 2е_a);

- максимальное краевое давление под подошвой фундамента, вычисленное с учетом его неполного контакта с грунтом, не превышает краевой ординаты эпюры предельного сопротивления основания.

Максимальное расчетное давление по подошве фундамента определяют по формуле

р_max= 2N_a/[3l(b/2 - e_a)] р_b, (6.33)

где N_a и е_а - то же, что и в формуле (6.29), причем е_а > b/6;

Значение р_b определяют по формуле (6.28), но для фундамента, имеющего условную ширину b_с.

При е_а > b/6 формула (6.32) приобретает вид

N_u,еq = 0,5b_clр_b. (6.34)

6.12.7 Глубину заложения фундаментов в грунтах, относимых по их сейсмическим свойствам согласно СНиП II-7 к I и II категориям, принимают, как правило, такой же, как и для фундаментов в несейсмических районах.

На площадках, сложенных грунтами III категории по сейсмическим свойствам, рекомендуется предусматривать мероприятия по улучшению строительных свойств грунтов основания до начала строительства.

Нельзя использовать в качестве оснований сейсмостойких сооружений без проведения предпостроечных мероприятий водонасыщенные грунты, способные к виброразжижению.

6.12.8 При невозможности заглубления фундаментов здания или отсека на одном уровне в дисперсных грунтах допустимую разность отметок h подошвы соседних фундаментов определяют исходя из условия (12.3), в котором расчетное значение угла внутреннего трения грунта должно быть уменьшено на величину , имеющую те же значения, что и в формуле (6.26).

Ленточные фундаменты примыкающих частей отсеков здания должны иметь одинаковое заглубление на протяжении не менее 1 м от осадочного шва. Столбчатые фундаменты, разделенные осадочным швом, должны располагаться на одном уровне.

Для зданий высотой более пяти этажей рекомендуется устройство подвального этажа под всем зданием или его отсеками.

6.13 Особенности проектирования оснований сооружений, возводимых вблизи источников динамических воздействий

6.13.1 Проектирование оснований сооружений должно осуществляться с учетом возможных динамических воздействий:

а) от стационарного оборудования с динамическими нагрузками, установленного в существующих и проектируемых сооружениях;

б) от автомобильного и железнодорожного транспорта и метрополитена;

в) от строительного оборудования;

г) от прочих источников (взрывные работы и т.д.).

Проектирование оснований при динамических воздействиях производят на основе инструментальных измерений или расчетного прогноза колебаний грунта.

6.13.2 Расчет оснований по несущей способности выполняют в тех же случаях, которые предусмотрены в 5.1.3, с учетом объемных сил инерции и динамических нагрузок от сооружения, для которых принимают наиболее невыгодное направление.

6.13.3 Среднее давление от статических нагрузок под подошвой фундамента p, кПа, в пределах зоны, где скорость колебаний поверхности грунта более 15 мм/с (от импульсных источников динамических воздействий) или 2 мм/с (от прочих источников), должно удовлетворять условию

p _cdR, (6.35)

где _cd - коэффициент условий работы грунтов основания при динамических воздействиях, принимаемый для мелких и пылеватых водонасыщенных песков и глинистых грунтов текучей консистенции _cd = 0,7; для всех остальных видов и состояний грунтов _cd= 1;

R - расчетное сопротивление грунта основания, кПа, определяемое в соответствии с требованиями 5.5.8.

6.13.4 Для мелких и пылеватых водонасыщенных песков и глинистых грунтов текучей консистенции в пределах зон, указанных в 6.13.3, необходимо производить расчет длительных осадок от совместного действия статических и динамических нагрузок (виброползучесть). Этот расчет допускается производить в соответствии с подразделом 5.5, принимая при этом уменьшенные значения модулей деформации грунтов, которые должны определяться, как правило, по результатам испытаний.

6.13.5 Для расчета прочности несущих конструкций сооружений с учетом их усталости, а также для оценки выполнения требований санитарных норм необходимо проводить расчет колебаний сооружений при динамических воздействиях с учетом взаимодействия с основанием. Допускается принимать, что основание обладает линейно-упругими свойствами.

6.13.6 Для выполнения требований расчета оснований по несущей способности и по деформациям рекомендуется снижать параметры динамических воздействий в их источнике (замена технологического процесса, перемещение источника, регулирование в источнике, активная виброизоляция и др.) или на путях распространения колебаний от источника (устройство экранов в виде стенок или траншей, изменение массы фундамента-приемника колебаний или жесткости его основания и др.). В дополнение к указанным мероприятиям или в качестве самостоятельной меры возможно увеличение заглубления фундамента, размеров его подошвы и т.д.

6.13.7 Для существующих сооружений при появлении вблизи них источников динамических воздействий, указанных в 6.13.1, необходимо проводить расчеты, указанные в 6.13.3-6.13.5.

  • Главная
  • "ПРОЕКТИРОВАНИЕ И УСТРОЙСТВО ОСНОВАНИЙ И ФУНДАМЕНТОВ ЗДАНИЙ И СООРУЖЕНИЙ. СП 50-101-2004" (утв. Госстроем РФ)