Последнее обновление: 21.12.2024
Законодательная база Российской Федерации
8 (800) 350-23-61
Бесплатная горячая линия юридической помощи
- Главная
- "ТРУБЫ И ФАСОННЫЕ ИЗДЕЛИЯ СТАЛЬНЫЕ С ТЕПЛОВОЙ ИЗОЛЯЦИЕЙ ИЗ ПЕНОПОЛИУРЕТАНА В ПОЛИЭТИЛЕНОВОЙ ОБОЛОЧКЕ. ТЕХНИЧЕСКИЕ УСЛОВИЯ. ГОСТ 30732-2001" (утв. Постановлением Госстроя РФ от 12.03.2001 N 19)
Приложения
ПРИЛОЖЕНИЕ А
(справочное)
ГОСТ 9.402-80 ЕСЗКС. Покрытия лакокрасочные. Подготовка металлических поверхностей перед окрашиванием
ГОСТ 12.1.007-76 ССБТ. Вредные вещества. Классификация и общие требования безопасности
ГОСТ 12.3.008-75 ССБТ. Производство покрытий металлических и неметаллических неорганических. Общие требования безопасности
ГОСТ 12.3.016-87 ССБТ. Строительство. Работы антикоррозионные. Требования безопасности
ГОСТ 12.3.038-85 ССБТ. Строительство. Работы по тепловой изоляции оборудования и трубопроводов. Требования безопасности
ГОСТ 17.2.3.02-78 Охрана природы. Атмосфера. Правила установления допустимых выбросов вредных веществ промышленными предприятиями
ГОСТ 166-89 Штангенциркули. Технические условия
ГОСТ 409-77 Пластмассы ячеистые и резины губчатые. Метод определения кажущейся плотности
ГОСТ 427-75 Линейки измерительные металлические. Технические условия
ГОСТ 550-75 Трубы стальные бесшовные для нефтеперерабатывающей и нефтехимической промышленности. Технические условия
ГОСТ 7076-99 Материалы и изделия строительные. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме
ГОСТ 7502-98 Рулетки измерительные металлические. Технические условия
ГОСТ 8731-74 Трубы стальные бесшовные горячедеформированные. Технические требования
ГОСТ 8733-74 Трубы стальные бесшовные холоднодеформированные и теплодеформированные. Технические требования
ГОСТ 10705-80 Трубы стальные электросварные. Технические условия
ГОСТ 11262-80 Пластмассы. Метод испытания на растяжение
ГОСТ 16338-85 Полиэтилен низкого давления. Технические условия
ГОСТ 17177-94 Материалы и изделия строительные теплоизоляционные. Методы испытаний
ГОСТ 17375-83 Детали трубопроводов стальные бесшовные приварные на 10 МПа ( 100 кгс/см ). Отводы крутоизогнутые. Конструкция и размеры
ГОСТ 17376-83 Детали трубопроводов стальные бесшовные приварные на 10 МПа ( 100 кгс/см ). Тройники. Конструкция и размеры
ГОСТ 17378-83 Детали трубопроводов стальные бесшовные приварные на 10 МПа ( 100 кгс/см ). Переходы. Конструкция и размеры
ГОСТ 17380-83 Детали трубопроводов стальные бесшовные приварные на 10 МПа ( 100 кгс/см ). Технические условия
ГОСТ 18321-73 Статистический контроль качества. Методы случайного отбора выборок штучной продукции
ГОСТ 18599-83 Трубы напорные из полиэтилена. Технические условия
ГОСТ 20295-85 Трубы стальные сварные для магистральных газонефтепроводов. Технические условия
ГОСТ 22056-76 Трубки электроизоляционные из фторопласта 4Д и 4ДМ. Технические условия
ГОСТ 23206-78 Пластмассы ячеистые жесткие. Метод испытания на сжатие
ГОСТ 24157-80 Трубы из пластмасс. Метод определения стойкости при постоянном внутреннем давлении
ГОСТ 26996-86 Полипропилен и сополимеры пропилена. Технические условия
ГОСТ 27078-86 Трубы из термопластов. Методы определения изменения длины труб после прогрева
ГОСТ 30256-94 Материалы и изделия строительные. Метод определения теплопроводности цилиндрическим зондом
СНиП 23-01-99 Строительная климатология
СНиП 2.04.07-86 Тепловые сети
СНиП 2.04.14-88 Тепловая изоляция оборудования и трубопроводов
СНиП 3.05.03-85 Тепловые сети
СНиП III-4-80* Техника безопасности в строительстве
ПБ 03-75-94 Правила устройства и безопасной эксплуатации трубопроводов пара и горячей воды
СанПиН 3183-84 Порядок накопления, транспортировки, обезвреживания и захоронения токсичных промышленных отходов
ПРИЛОЖЕНИЕ Б
(рекомендуемое)
Пример расчета толщины тепловой изоляции труб при бесканальной прокладке тепловых сетей приведен для России. Для других климатических зон расчет осуществляется аналогично с применением местных расчетных характеристик.
Толщина пенополиуретановой изоляции стальных труб для бесканальной прокладки тепловых сетей определена расчетом по СНиП 2.04.14 с использованием нормированной плотности теплового потока.
В качестве расчетных значений плотности теплового потока через поверхность изоляции трубопроводов бесканальной прокладки приняты данные, приведенные в СНиП 2.04.14.
В соответствии с рекомендациями СНиП 2.04.14 за расчетные температуры подающего и обратного трубопроводов приняты средние за год температуры воды (таблица Б.1).
В качестве расчетной температуры окружающей среды используется средняя за год температура наружного воздуха, так как при определении толщины величина заглубления верха теплоизоляционной конструкции трубопроводов принята 0,7 м и менее (по действующим нормативным документам на тепловую изоляцию трубопроводов).
Среднегодовые температуры наружного воздуха по районам строительства должны приниматься по СНиП 23-01.
Преобладающим видом грунта принят суглинок со средним влагосодержанием 0,27 кг/кг. На основании этих данных в качестве расчетной теплопроводности грунта принято значение 1,86 Вт/м·°С, а теплопроводность пенополиуретановой изоляции в оболочке из полиэтилена - 0,033 Вт/м·°С.
Расчетные значения толщины пенополиуретановой изоляции для различных районов строительства Российской Федерации представлены в таблице Б.2.
Таблица Б.2
* Толщина теплоизоляции принята менее расчетной по условиям нормированных теплопотерь
** Толщина теплоизоляции определяется нестандартным наружным диаметром полиэтиленовой оболочки 1300 или 1400 мм
На основании этих данных, с учетом размеров полиэтиленовых труб-оболочек (таблица 2), определена толщина пенополиуретановой изоляции индустриальных конструкций теплопроводов для бесканальной прокладки тепловых сетей (таблица 1).
Рекомендации по применению изолированных труб типов 1 (стандартный) и 2 (усиленный) в зависимости от климатических районов строительства тепловых сетей приведены в таблице Б.3.
Таблица Б.3
* Изолированные стальные трубы диаметром 1020 мм могут быть применены на севере Европейского района, в Западной и Восточной Сибири и Дальнем Востоке при условии использования полиэтиленовой оболочки нестандартного наружного диаметра (1300 или 1400 мм)
ПРИЛОЖЕНИЕ В
(рекомендуемое)
В.1 Отвод
В. 1.1 Конструкция и размеры отводов должны соответствовать рисунку В.1 и таблице В.1.
Рисунок В.1 - Отвод: 1 - стальная труба; 2 - изоляция из пенополиуретана; 3 - оболочка из полиэтилена; 4 - центрирующая опора; 5 - стальной отвод; 6 - электроизоляционная трубка по ГОСТ 22056; 7 - проводник-индикатор системы ОДК
Таблица В.1 - Отвод
В миллиметрах
** Допускается изготовление отводов с другими углами
В.1.2 Пример условного обозначения отвода 90° диаметром 57 мм толщиной стенки 3 мм с тепловой изоляцией типа 1:
Отвод Ст 57х3-90°-1-ППУ-ПЭ ГОСТ 30732-2001
В.2.1 Конструкция и размеры переходов должны соответствовать рисунку В.2 и таблице В.2.
Рисунок В.2 - Переход: 1 - стальная труба; 2 - электроизоляционная трубка по ГОСТ 22056; 3 - оболочка из полиэтилена; 4 - изоляция из пенополиуретана; 5 - центрирующая опора; 6 - проводник-индикатор системы ОДК
Таблица В.2 - Переход
В миллиметрах
В.2.2 Пример условного обозначения стального перехода диаметром 89-76 мм с изоляцией типа 2:
Переход Ст 89-76-2-ППУ-ПЭ ГОСТ 30732-2001
В.3 Тройник
В.3.1 Конструкция и размеры тройника должны соответствовать рисунку В.3 и таблице В.3 и В.5.
Рисунок В.3 - Тройник: 1 - оболочка из полиэтилена; 2 - изоляция из пенополиуретана; 3 - центрирующая опора; 4 - проводник-индикатор системы ОДК; 5 - стальная труба
Таблица В.3 - Тройник
В миллиметрах
В.3.2 Пример условного обозначения тройника диаметром 57- 57 мм с изоляцией типа 1:
Тройник Ст 57-57-1-ППУ-ПЭ ГОСТ 30732-2001
В.4 Тройниковое ответвление
В.4.1 Конструкция и размеры тройникового ответвления должны соответствовать рисунку В4 и таблицам В.4-В.6.
Рисунок В.4 - Тройниковое ответвление: 1 - стальной отвод; 2 - оболочка из полиэтилена; 3 - проводник-индикатор системы ОДК; 4 - изоляция из пенополиуретана; 5 - электроизоляционная трубка по ГОСТ 22056; 6 - центрирующая опора
Таблица В.4 - Тройниковое ответвление
В миллиметрах
В.4.2 пример условного обозначения тройникового ответвления изоляцией типа 1:
Тройниковое ответвление Ст 426-219-1 ППУ-ПЭ ГОСТ 30732-2001
Таблица В.5 - Допуск по толщине стенок
В миллиметрах
Окончание таблицы В.5
Таблица В.6
Продолжение таблицы В.6
Продолжение таблицы В.6
Примечание - При толщине стенки основной трубы, больше указанной в таблице, толщина стенки ответвления должна приниматься исходя из условий:
1) толщина патрубков ответвления должна быть равна толщине стенки основной трубы с допуском по таблице В.5;
2) толщина стенки отвода должна быть не меньше толщины стенки патрубков ответвления
В.5.1 Конструкция и размеры параллельного тройника должны соответствовать рисунку В.5 и таблице В.7.
Рисунок В.5 - Тройник параллельный: 1 - стальной отвод; 2 - электроизоляционная трубка по ГОСТ 22056; 3 - изоляция из пенополиуретана; 4 - центрирующая опора; 5 - проводник-индикатор системы ОДК; 6 - стальная труба; 7 - оболочка из полиэтилена
В.5.2 Пример условного обозначения параллельного тройника диаметром 426-219 мм с изоляцией типа 2:
Тройник параллельный Ст 426-219-2-ППУ-ПЭ ГОСТ 30732-2001
Таблица В.7 Тройник параллельный
В миллиметрах
Расстояние между оболочками H1 =150
В миллиметрах
Расстояние между оболочками H1 =150
В миллиметрах
Расстояние между оболочками H1 =150
В миллиметра
Расстояние между оболочками H1 =150
В миллиметрах
Расстояние между оболочками H1 =150
В миллиметрах
Расстояние между оболочками H1 =150
В миллиметрах
Расстояние между оболочками H1 =150
В миллиметрах
Расстояние между оболочками H1 =150
В миллиметрах
Расстояние между оболочками H1 =250
В миллиметрах
Расстояние между оболочками H1 =250
d1 | 426 | 530 | 630 | 720 | 820 | 920 | 1020 | |
d2 | 426 | 426 | 426 | 426 | 426 | 426 | 426 | |
H | 913 | 985 | 1030 | 1080 | 1130 | 1180 | 1230 | |
L | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | |
L1 | 100 | 120 | 115 | 120 | 120 | 120 | 120 | |
L2 | 400 | 400 | 400 | 400 | 400 | 400 | 400 |
В миллиметрах
Расстояние между оболочками H1 =450
d1 | 530 | 630 | 720 | 820 | 920 | 1020 | |
d2 | 530 | 530 | 530 | 530 | 530 | 530 | |
H | 1160 | 1205 | 1255 | 1305 | 1355 | 1405 | |
L | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | |
L1 | 395 | 390 | 395 | 395 | 395 | 395 | |
L2 | 500 | 500 | 500 | 500 | 500 | 500 |
В миллиметрах
Расстояние между оболочками H1 =450
d1 | 630 | 720 | 820 | 920 | 1020 | |
d2 | 630 | 630 | 630 | 630 | 630 | |
H | 1250 | 1300 | 1350 | 1400 | 1450 | |
L | 2000 | 2000 | 2000 | 2000 | 2000 | |
L1 | 335 | 340 | 340 | 340 | 340 | |
L2 | 400 | 400 | 400 | 400 | 400 | |
L1 * | 260 | 260 | 260 | 260 | 260 | |
L2 * | 320 | 320 | 320 | 320 | 320 |
Продолжение таблицы В.7
Расстояние между оболочками H1 =700
d1 | 720 | 820 | 920 | 1020 |
d2 * | 720 | 720 | 720 | 720 |
H | 1500 | 1550 | 1600 | 1650 |
L | 2000 | 2000 | 2000 | 2000 |
L1 | 160 | 160 | 160 | 160 |
L2 | 230 | 230 | 230 | 230 |
* Сварные отводы
Продолжение таблицы В.7
Расстояние между оболочками H1 =800
Окончание таблицы В.7
Расстояние между оболочками H1 =900
Окончание таблицы В.7
Расстояние между оболочками H1 =1000
В.6 Тройник с шаровым краном воздушника
В.6.1 Конструкция и размеры тройника с шаровым краном воздушника должны соответствовать рисунку В.6 и таблице В.8.
Рисунок В.6 - Тройник с шаровым краном воздушника: 1 - изоляция из пенополиуретана; 2 - центрирующая опора; 3 - проводник-индикатор системы ОДК; 4 - стальная труба; 5 - электроизоляционная трубка по ГОСТ 22056; 6 - оболочка из полиэтилена
Таблица В.8 - Тройник с шаровым краном воздушника
В миллиметрах
В.6.2 Пример условного обозначения тройника с шаровым краном воздушника диаметром 159-32 мм с изоляцией типа 1:
Тройник с шаровым краном воздушника Ст 159-32-1-ППУ-ПЭ ГОСТ 30732-2001
В.7 Z-образный элемент
В.7.1 Конструкция и размеры Z-образного элемента должны соответствовать рисунку В.7 и таблице В.9.
Рисунок В.7 - Z-образный элемент: 1 - оболочка из полиэтилена; 2 - стальная труба; 3 - изоляция из пенополиуретана; 4 - центрирующая опора; 5 - стальной отвод; 6 - электроизоляционная трубка по ГОСТ 22056; 7 - проводник-индикатор системы ОДК
Таблица В.9 - Z-образный элемент
В миллиметрах
В.7.2 Пример условного обозначения Z-образного элемента диаметром 108 мм с изоляцией типа 1:
Z-образный элемент Ст 108-1-ППУ-ПЭ ГОСТ 30732-2001
В. 8 Неподвижная опора
В.8.1 Конструкция и размеры неподвижной опоры должны соответствовать рисунку В.8 и таблице В.10.
Рисунок В.8 - Неподвижная опора: 1 - оболочка из полиэтилена; 2 - стальная труба; 3 - проводник-индикатор системы ОДК; 4 - центрирующая опора; 5 - изоляция из пенополиуретана; 6 - неподвижная опора
Таблица В.10 - Неподвижная опора
В миллиметрах
* Максимальная нагрузка на элемент опоры
В.8.2 Пример условного обозначения неподвижной опоры для трубы диаметром 76 мм, высотой 275 мм и толщиной 15 мм с изоляцией типа 1:
Неподвижная опора Ст 76-275х15-1-ППУ-ПЭ ГОСТ 30732-2001
В.9 Металлическая заглушка изоляции
В.9.1 Конструкция и размеры металлической заглушки изоляции должны соответствовать рисунку В.9.
Рисунок В.9 - Металлическая заглушка изоляции
В.9.2 Пример условного обозначения заглушки длиной 650 мм для трубы диаметром 108 мм:
Заглушка 108х650 ГОСТ 30732-2001
В.10 Элемент трубопровода с кабелем вывода
В.10.1 Конструкция и размеры элемента трубопровода с кабелем вывода должны соответствовать рисунку В.10.
Рисунок В.10 - Элемент трубопровода с кабелем вывода: 1 - стальная труба; 2 - оболочка из полиэтилена; 3 - кабельный вывод; 4 - изоляция из пенополиуретана; 5 - центрирующая опора;6 - проводник-индикатор системы ОДК
В.10.2 Пример условного обозначения элемента трубопровода с кабелем вывода диаметром 57 мм с изоляцией типа 1:
Элемент трубопровода с кабелем вывода
Ст 57-1-ППУ-ПЭ ГОСТ 30732-2001
В.11 Концевой элемент трубопровода с кабелем вывода
В.11.1 Конструкция и размеры концевого элемента трубопровода с кабелем вывода должны соответствовать рисунку В.11.
Рисунок В.11 - Концевой элемент трубопровода с кабелем вывода: 1 - стальная труба; 2 - оболочка из полиэтилена; 3 - кабельный вывод; 4 - изоляция из пенополиуретана; 5 - центрирующая опора;6 - проводник-индикатор системы ОДК; 7- металлическая заглушка изоляции;8 - герметик (термоусадочное полотно)
В.11.2 Пример условного обозначения концевого элемента трубопровода с кабелем вывода диаметром 76 мм с изоляцией типа 1:
Концевой элемент трубопровода с кабелем вывода
Ст 76-1-ППУ-ПЭ ГОСТ 30732-2001
РАСЧЕТНАЯ МАССА ОДНОГО МЕТРА ДЛИНЫ ИЗОЛИРОВАННОЙ ТРУБЫТаблица Г.1
Примечание - Плотность пенополиуретана принята равной 80 кг/м
ПРИЛОЖЕНИЕ Д
(рекомендуемое)
Интегральная оценка срока службы тепловой изоляции труб по данной методике производится в случае использования новых систем пенополиуретанов или новых технологий нанесения тепловой изоляции на трубы.
Методика предусматривает:
- определение долговечности тепловой изоляции труб в зависимости от температуры;
- оценку срока службы тепловой изоляции труб в зависимости от температурного графика теплоносителя.
Д.1 Методика определения долговечности пенополиуретана тепловой изоляции труб в зависимости от температуры
Долговечность тепловой изоляции определяют по критерию прочности на сдвиг в тангенциальном направлении.
В зависимости от температуры долговечность пенополиуретана в общем виде должна подчиняться экспоненциальному закону:
(Д.1)
где - время старения соответственно для одинакового уровня свойств того или иного критерия долговечности, сут;
T - температура теплоносителя, °С;
T_y - температура ускоренных испытаний, °С;
E - эффективная энергия активации процесса старения ( 150 кДж/моль·°С);
R - универсальная газовая постоянная (~ 8,33 Дж/моль).
Контрольные значения долговечности в зависимости от температуры определяют следующим уравнением:
(Д.2)
Для определения кривых долговечности образцы стальных труб (например, диаметром 76 мм) с теплоизоляцией из пенополиурета в полиэтиленовой оболочке длиной 3 м подвергают тепловому старению в воздушной среде на стенде путем пропуска по стальным трубам теплоносителя с температурами 165, 155, 145, 140 °С (по два образца на каждую температуру) в течение времени, приведенного в таблице Д.1.
Таблица Д.1
Температура теплоносителя Т, °С | Время испытаний 33, сут |
165 | 7; 15; 30; 45 |
155 | 15; 30; 45; 60 |
145 | 30; 45; 60; 75 |
140 | 45; 65; 75; 90 |
После каждого цикла теплового старения теплоизоляцию образцов в средней части поперечно разрезают по периметру (до поверхности стальной трубы), выделяя участок длиной 200 мм. После чего температуру теплоносителя устанавливают на уровне 140 °С и пропускают его в течение суток и затем определяют прочность на сдвиг на тангенциальном направлении согласно 9.21 настоящего стандарта.
По результатам испытаний на сдвиг в тангенциальном направлении определяют экспериментальную зависимость прочности на сдвиг от времени теплового старения при различных температурах теплового старения.
После установления функциональной зависимости прочности на сдвиг от времени при температурах теплового старения определяют значения долговечности при температурах 140, 145, 155 и 165 °С при уровне прочности на сдвиг 0,13 МПа.
После определения значений долговечности: 1 - при температуре 140 °С, 2 - при температуре 145 °С, 3 - при температуре 155 °С и 4 - при температуре 165 °С устанавливают экспериментальную зависимость долговечности от температуры.
Значения долговечности, вычисленные по полученной эмпирической зависимости при различных температурах теплового старения, должны быть не менее контрольных значений долговечности, рассчитанных по уравнению (Д.2) при тех же температурах.
Д.2 Оценка срока службы пенополиуретановой теплоизоляции труб тепловых сетей
Срок службы пенополиуретана теплоизоляции оценивают с учетом воздействия температур исходя из температурного графика теплоносителя применительно к различным климатическим зонам России. Для других климатических зон расчет осуществляется аналогично с применением местных расчетных характеристик.
Годовой температурный график приводится к виду, удобному для использования в последующих расчетах, например для климатической зоны Западной Сибири:
- продолжительность воздействия в отопительный сезон n (в долях от года) температур до 102 °С (относят к температуре 102 °С), до 110 °С (относят к температуре 110 °С), до 128 °С (относят к температуре 128 °С), до 143 °С (относят к температуре 143 °С), до 149 °С относят к температуре 149 °С) и до 150 °С (относят к температуре 150 °С).
При указанных температурах по полученной эмпирической зависимости определяют долговечность пенополиуретана (где n =1-5).
Предполагаемый срок службы (в годах) вычисляют по формуле
(Д.3)
ПРИЛОЖЕНИЕ Е
(рекомендуемое)
Для определения теплопроводности тепловой изоляции трубы применяют установку (рисунок Е.1), представляющую собой стальную трубу диаметром D_H =100-150 мм, длиной не менее 2,0 м. Внутри трубы располагают нагревательный элемент, смонтированный на огнеупорном материале.
Рисунок Е.1: 1 - стальная труба; 2 - электронагреватель; 3 - испытуемый материал; 4 - изоляция; 5 - термопары; 6 - вольтметр; 7 - амперметр; 8 - автотрансформатор; 9 - переключатель; 10 - гальванометр;11 - сосуд со льдом; 12 - самопишущий гальванометр
Нагревательный элемент разделяют на три самостоятельные секции по длине трубы. Центральная секция, занимающая 1/3 длины трубы, является рабочей, боковые секции служат для устранения утечек теплоты через торцы.
Трубу устанавливают на подставках на расстоянии 1,5-2 м от пола и стен помещения, в котором производят испытания.
Измерения температуры трубы и поверхности испытуемого материала производят термопарами. Путем регулировки электрической мощности, потребляемой охранными секциями, необходимо добиваться отсутствия перепада температур между рабочей и охранными секциями. Испытания проводят при установившемся тепловом режиме, при котором температура на поверхности трубы и изоляции постоянна во времени.
Расход электрической энергии рабочим нагревателем может определяться как ваттметром, так и отдельно вольтметром и амперметром.
Теплопроводность тепловой изоляции , Вт/м·°С, определяют по формуле
(Е.1)
где t1 и t2 - температура на поверхности трубы и изоляции, °С;
l - длина рабочей секции, м;
d - наружный диаметр стальной трубы, м;
D - наружный диаметр трубы-оболочки, м.
Тепловой поток Q, Вт, определяют по формуле
(Е.2)
где I - среднее замеренное значение силы тока, А;
V - замеренное напряжение рабочего нагревателя, В.
ПРИЛОЖЕНИЕ Ж
(рекомендуемое)
Сущность метода заключается в измерении объема воздуха, вытесненного образцом в процессе испытания.
Ж.1 Аппаратура
Воздушный пикнометр (рисунок Ж.1).
Рисунок Ж.1: 1 - манометр с дибутилфталатом; 2 - ртутный манометр; 3 - камера; 4 - образец; 5 - воздушный кран; 6 - колба с ртутью; 7 - винт; 8 - подставка; 9 - кран
Прибор состоит из двух симметрично расположенных и равных по объему систем (рабочей и контрольной), соединенных через два параллельных манометра. Один из манометров - ртутный (2), внутренним диаметром (5±0,5) мм и высотой (60±0,5) см, используется для одновременного изменения объемов систем на определенную величину, а также для выравнивания давлений в процессе проведения испытаний; другой манометр с дибутилфталатом (1), внутренним диаметром (3±0,3) мм и высотой (40±0,5) см, - для наблюдения за разностью давлений в обеих системах.
Рабочая система объемом (320±10) см3 включает в себя камеру 3 для образца 4 и левую половину манометров 1 и 2. Камера для образца объемом (300±10 см3) представляет собой цилиндрический сосуд с тщательно пришлифованной крышкой. С помощью крана 5 обе системы могут сообщаться с окружающей атмосферой или быть изолированными от нее и друг от друга. Колба 6 с ртутью служит для изменения давления в обеих системах прибора.
Весы с погрешностью не более 0,01 г.
Линейка металлическая по ГОСТ 427.
Ж.2 Подготовка к испытанию и проведение испытания
Ж.2.1 Для испытания из средней части теплоизоляционного слоя вырезают три образца-кубика размером (25±0,5) мм. Допускается изготавливать образцы размером 25х25хt мм, где t - толщина пенополиуретана.
На поверхности образцов не должно быть пустот (каверн), трещин и других видимых дефектов.
Перед испытанием образцы кондиционируют в течение 24 ч при температуре (23±2) °С.
Ж.2.2 Проверяют симметричность обеих систем прибора (отсутствие разности давлений в обеих системах при максимальном разряжении их без образца), для этого используют монолитный образец из полиуретана, размером по Ж.2.1, объем которого V_M измеряют с погрешностью не более 0,1 см3.
Ж.2.3 Обе системы с окружающей атмосферой соединяют краном 5. Перемещая колбу 6 с помощью подставки 8 (грубо) и винта 7 (точно), устанавливают уровень ртути по нижней части мениска на отметке А.
Ж.2.4 Закрывают камеру крышкой и обе системы изолируют друг от друга и от окружающей атмосферы. Колбу 6 плавно опускают и устанавливают уровень на отметке Б. По истечении (30±1) с измеряют уровень ртути (R0) в левом колене манометра 2.
Ж.2.5 Обе системы соединяют с окружающей атмосферой и повторяют испытание в соответствии с Ж.2.3, Ж.2.4 до тех пор, пока три последовательных измерения не дадут одинаковых результатов. Расхождение между последовательными измерениями больше чем на 1 мм указывает на возможность утечки в приборе.
Ж.2.6 Монолитный образец взвешивают с погрешностью не более 0,01 г, помещают в камеру и плотно закрывают крышкой. Затем устанавливают уровень ртути на отметке А и обе системы изолируют друг от друга и от окружающей атмосферы. Уровень ртути устанавливают на отметке Б и по истечении (30±1) с кран 9 перекрывают. Перемещением колбы 3 уравнивают давление в обеих системах по манометру 1 и по истечении (30±1) с измеряют уровень ртути R1 в левом колене манометра 2.
Ж.2.7 Определяют постоянную прибора K из зависимости V_M = K(R1 - R0). Метки А и Б должны находиться на таком расстоянии друг от друга, чтобы постоянная прибора составляла (1±0,1) см3/мм.
Ж.З Проведение испытания
Ж.3.1 Измеряют линейные размеры и определяют объем и массу образцов из пенополиуретана.
Ж.3.2 Образец из пенополиуретана помещают в камеру и проводят испытание по Ж.2.5, Ж.2.6.
Ж.4 Обработка результатов
Ж.4.1 Объемное содержание закрытых пор V_з, %, вычисляют по формуле
(Ж.1)
где V - объем испытуемого образца, см3.
Ж.4.2 За результат испытаний принимают среднеарифметическое параллельных определений.
- Главная
- "ТРУБЫ И ФАСОННЫЕ ИЗДЕЛИЯ СТАЛЬНЫЕ С ТЕПЛОВОЙ ИЗОЛЯЦИЕЙ ИЗ ПЕНОПОЛИУРЕТАНА В ПОЛИЭТИЛЕНОВОЙ ОБОЛОЧКЕ. ТЕХНИЧЕСКИЕ УСЛОВИЯ. ГОСТ 30732-2001" (утв. Постановлением Госстроя РФ от 12.03.2001 N 19)