в базе 1 113 607 документа
Последнее обновление: 19.04.2024

Законодательная база Российской Федерации

Расширенный поиск Популярные запросы

8 (800) 350-23-61

Бесплатная горячая линия юридической помощи

Навигация
Федеральное законодательство
Содержание
  • Главная
  • "ПОЖАРНАЯ БЕЗОПАСНОСТЬ. ОБЩИЕ ТРЕБОВАНИЯ. ГОСТ 12.1.004-91" (утв. Постановлением Госстандарта СССР от 14.06.91 N 875)
действует Редакция от 14.06.1991 Подробная информация
"ПОЖАРНАЯ БЕЗОПАСНОСТЬ. ОБЩИЕ ТРЕБОВАНИЯ. ГОСТ 12.1.004-91" (утв. Постановлением Госстандарта СССР от 14.06.91 N 875)

7. ПРИМЕРЫ РАСЧЕТОВ

Пример 1. Полый технологический аппарат объемом 12 м3рассчитан на максимальное избыточное давление 0,2 МПа (абсолютное давление 0,3 МПа) и предназначен для работы при атмосферном давлении с содержащей ацетон реакционной массой. Аппарат имеет рубашку обогрева (80°С). Необходимо определить безопасную площадь разгерметизации.

Нормальная скорость распространения пламени наиболее опасной околостехиометрической ацетоно-воздушной смеси при атмосферном давлении и температуре (298 К) составляет 0,32 м х с-1.Следовательно, при температуре в аппарате 80°С (353 К) максимальное значение нормальной скорости распространения пламени в соответствии с формулой (163)

Для стехиометрической ацетоно-воздушной смеси _е=9,28; Е_i=7,96; М_i=(58x0,05+28х0,95) кг х кмоль(-1)=29,5 кг х кмоль(-1). Поскольку _m=0,3 МПа/0,1 МПа=3 превышает значение 2, то для вычисления безопасной площади разгерметизации воспользуемся критериальным соотношением (159). Выражение для комплекса подобия W в соответствии с формулой (160) и определенными значениями S_ui и Mi может быть записано в виде

где F намеряют в м2.

Следовательно, критериальное соотношение (159) относительно F можно записать в виде

С увеличением степени негерметичности сосуда объемом около 10 м3 от 0,025 до 0,25 значение фактора турбулизации возрастает от 2,5 до 5. Предположим, что Х=2,5 при m=1. При этом минимальная площадь разгерметизации F=0,175 м2, а значит =0,03. Последнее подтверждает, что значение фактора турбулизации выбрано правильно. Действительно, если бы мы предположили, что Хc=5, то получили бы слишком низкое для такой степени турбулизации значение =0,06 (вместо 0,25). Итак, безопасная площадь разгерметизации составляет в данном случае 0,175 м2, что равнозначно сбросному отверстию диаметром 0,47 м.

Пример 2. Сосуд объемом 4 м3 без встроенных внутрь элементов для хранения бензола, рассчитанный на максимальное абсолютное давление 0,2 МПа, необходимо оснастить надежной системой сброса давления взрыва с отводом продуктов взрыва по трубопроводу в безопасное место.

Для бензоло-воздушной смеси стехиометрического состава при атмосферных условиях S_ui=0,36 м х c(-1); E_i=7,99; М_i=(78х0,027+28х0,973) кг х кмоль(-1)=29,35 кг х кмоль(-1). Для систем разгерметизации со сбросным трубопроводам без орошения истекающих продуктов хладагентом вне зависимости от объема сосуда Х=4. Так как _m=0,2 МПа/0,1 МПа = 2, то расчет площади разгерметизации проводим по критериальному соотношению (158). Выбрав в качестве значения коэффициента расхода=0,4, получаем выражение

т. е. диаметр сбросного трубопровода должен составлять около 0,7 м, что слишком много для сосуда, эквивалентный диаметр которого (диаметр сферы объемом 4 м3) 1,97м.

Поэтому система сброса давления, включая трубопровод, должна быть снабжена системой орошения. При этом может быть принято c=1,5, а значит, как нетрудно вычислить, диаметр сбросного трубопровода будет равен 0,4 м, что вполне приемлемо для данного сосуда, рассчитанного на достаточно низкое давление.

Пример 3. Реактор вместимостью 6 м3, в котором возможно образование изопропаноло-воздушной стехиометрической смеси при давлении 0,2 МПа, содержит сложные вращающиеся детали. Требуется определить безопасную площадь разгерметизации при условии, что реактор рассчитан на избыточное давление 0,4 МПа (абсолютное давление 0,5 МПа).

Так как _m=0,5 МПа/0,2 МПа=2,5 больше 2, то расчет ведем по формуле (159). Для стехиометрической изопропаноло-воздушной смеси Mi = (60x0,044+28х0,956) кг х кмоль-1=29,4 кг х кмоль(-1); Sui=0,295(0,2/0,1(-0,5)=0,21 м х с(-1); _е=9,3; Е_i=8,0. Поскольку влияние встроенных деталей на турбулизацию однозначно неизвестно и объем реактора относительно невелик, выбираем значение Х=8. При значении коэффициента расхода=l имеем

Отсюда нетрудно вычислить, что диаметр предохранительной мембраны должен быть равен 0,5 м.

Пример 4 (обратная задача). В лабораторном сосуде объемом 0,01 м3, рассчитанном на давление 2,0 МПа и имеющем сбросное отверстие для установки предохранительной мембраны диаметром 2,5 см, проводят исследования по определению нормальных скоростей распространения пламени для стехиометрических метано-воздушных смесей при различных давлениях. Требуется определить, до какого максимального начального давления можно подавать в сосуд горючую смесь, чтобы после ее воспламенения в центре сосуда давление взрыва не превысило допустимого давления 2,0 МПа.

Так как с ростом давления нормальная скорость падает, то с некоторым запасом в качестве S_ui выбираем значение 0,305 м х с(-1), полученное для атмосферного давления. Для стехиометрической метано-воздушной смеси M_i=(16х0,094+20х0,906) кг х кмоль(-1)=26,9 кг х кмоль(-1);Е_i=7,4; _e=8,7. Значения фактора турбулизации и коэффициента расхода могут быть приняты соответственно c=1 и =0,8.

Искомое значение начального давления взрыва в сосуде входит в значение _m=P_m/P_i, причем P_m=2,0 МПа в соответствии с условиями задачи. Записанное относительно _m критериальное соотношение (159) принимает вид

а следовательно, максимально допустимое начальное давление горючей смеси в сосуде

т. е. не должно превышать 0,6 МПа.

(Введено дополнительно, Изм. N 1).

  • Главная
  • "ПОЖАРНАЯ БЕЗОПАСНОСТЬ. ОБЩИЕ ТРЕБОВАНИЯ. ГОСТ 12.1.004-91" (утв. Постановлением Госстандарта СССР от 14.06.91 N 875)