в базе 1 113 607 документа
Последнее обновление: 03.04.2025

Законодательная база Российской Федерации

Расширенный поиск Популярные запросы

8 (800) 350-23-61

Бесплатная горячая линия юридической помощи

Навигация
Федеральное законодательство
Содержание
  • Главная
  • ПРИКАЗ МЧС РФ от 10.07.2009 N 404 "ОБ УТВЕРЖДЕНИИ МЕТОДИКИ ОПРЕДЕЛЕНИЯ РАСЧЕТНЫХ ВЕЛИЧИН ПОЖАРНОГО РИСКА НА ПРОИЗВОДСТВЕННЫХ ОБЪЕКТАХ"
действует Редакция от 10.07.2009 Подробная информация
ПРИКАЗ МЧС РФ от 10.07.2009 N 404 "ОБ УТВЕРЖДЕНИИ МЕТОДИКИ ОПРЕДЕЛЕНИЯ РАСЧЕТНЫХ ВЕЛИЧИН ПОЖАРНОГО РИСКА НА ПРОИЗВОДСТВЕННЫХ ОБЪЕКТАХ"

Приложение N 3. МЕТОДЫ ОЦЕНКИ ОПАСНЫХ ФАКТОРОВ ПОЖАРА

1. В настоящем приложении представлены методы оценки опасных факторов, реализующихся при различных сценариях пожаров, взрывов на территории объекта и в селитебной зоне вблизи объекта.

Для оценки опасных факторов, реализующихся при пожарах в зданиях (помещениях) объекта, используются методы, регламентированные приложением N 5 к настоящей Методике.

I. Истечение жидкости и газаИстечение жидкости

2. Рассматривается резервуар, находящийся в обваловании (рис. П3.1).

Вводятся следующие допущения:

истечение через отверстие однофазное;

резервуар имеет постоянную площадь сечения по высоте;

диаметр резервуара много больше размеров отверстия;

размеры отверстия много больше толщины стенки;

поверхность жидкости внутри резервуара горизонтальна;

температура жидкости остается постоянной в течение времени истечения.

Массовый расход жидкости G (кг/с) через отверстие во времени t (с) определяется по формуле:

(П3.1)

где G_0 - массовый расход в начальный момент времени, кг/с, определяемый по формуле:

(П3.2)

где ро - плотность жидкости, кг/м3;

g - ускорение свободного падения (9,81 м/с2);

мю - коэффициент истечения;

A_hol - площадь отверстия, м2;

h_hol - высота расположения отверстия, м;

A_R - площадь сечения резервуара, м2;

h_0 - начальная высота столба жидкости в резервуаре, м.

Высота столба жидкости в резервуаре h (м) в зависимости от времени t определяется по формуле:

(П3.3)

Условия перелива струи жидкости (при h_0 > h_hol ) через обвалование определяется по формуле:

(П3.4)

где H - высота обвалования, м;

L - расстояние от стенки резервуара до обвалования, м.

Рис. П3.1. Схема для расчета истечения жидкости из отверстия в резервуаре

Количество жидкости m (кг), перелившейся через обвалование за полное время истечения, определяется по формуле:

(П3.5)

где t_pour - время, в течение которого жидкость переливается через обвалование, с (т.е. время, в течение которого выполняется условие (П3.4)).

Величина t_pour определяется по формуле:

(П3.6)

где a, b, c - параметры, которые определяются по формулам:

(П3.7)
(П3.8)
(П3.9)

В случае, если жидкость в резервуаре находится под избыточным давлением

ДельтаР (Па), величина мгновенного массового расхода G_0 (кг/с) определяется по формуле:

(П3.10)

Для определения количества жидкости, перелившейся через обвалование, и

времени перелива следует проинтегрировать соответствующую систему

уравнений, где величина ДельтаР может быть переменной.

Истечение сжатого газа

3. Массовая скорость истечения сжатого газа из резервуара определяется по формулам:

докритическое истечение:

(П3.11)

(П3.12)

сверхкритическое истечение:

(П3.13)
(П3.14)

где G - массовый расход, кг/с;

P_a - атмосферное давление, Па;

P_V - давление газа в резервуаре, Па; гамма - показатель адиабаты газа;

A_hol - площадь отверстия, м2;

мю - коэффициент истечения (при отсутствии данных допускается принимать равным 0,8);

ро_V - плотность газа в резервуаре при давлении P_V , кг/м3.

Истечение сжиженного газа из отверстия в резервуаре

4. Массовая скорость истечения паровой фазы G_V (кг/с) определяется по формуле:

(П3.15)

где мю - коэффициент истечения;

A_hol - площадь отверстия, м2;

P_C - критическое давление сжиженного газа, Па;

М - молярная масса, кг/моль;

R - универсальная газовая постоянная, равная 8,31 Дж/(K x моль);

T_C - критическая температура сжиженного газа, K;

P_R = P_V / P_C - безразмерное давление сжиженного газа в резервуаре;

P_V - давление сжиженного газа в резервуаре, Па.

Массовую скорость истечения паровой фазы можно также определять по формулам (П3.11) - (П3.14).

Массовая скорость истечения жидкой фазы G_L (кг/с) определяется по формуле:

(П3.16)

где ро_L - плотность жидкой фазы, кг/м3;

ро_V - плотность паровой фазы, кг/м3;

T_R = T / T_C - безразмерная температура сжиженного газа;

T - температура сжиженного газа в резервуаре, K.

Растекание жидкости при квазимгновенном разрушении резервуара

5. Под квазимгновенным разрушением резервуара следует понимать внезапный (в течение секунд или долей секунд) распад резервуара на приблизительно равные по размеру части. При такой пожароопасной ситуации часть хранимой в резервуаре жидкости может перелиться через обвалование.

Ниже представлена математическая модель, позволяющая оценить долю жидкости, перелившейся через обвалование при квазимгновенном разрушении резервуара. Приняты следующие допущения:

рассматривается плоская одномерная задача;

время разрушения резервуара много меньше характерного времени движения гидродинамической волны до обвалования;

жидкость является невязкой;

трение жидкости о поверхность земли отсутствует;

поверхность земли является плоской, горизонтальной.

Система уравнений, описывающих движение жидкости, имеет вид:

(П3.17)

где h - высота столба жидкости над фиксированным уровнем, м;

h_G - высота подстилающей поверхности над фиксированным уровнем, м;

u - средняя по высоте скорость движения столба жидкости, м/с;

x - координата вдоль направления движения жидкости, м;

t - время, с;

g - ускорение свободного падения (9,81 м/с2).

Граничные условия с учетом геометрии задачи (рис. П3.2) имеют вид:

(П3.18)
(П3.19)
(П3.20)
(П3.21)

где a - высота обвалования.

Массовая доля жидкости Q (%), перелившейся через обвалование к моменту времени T, определяется по формуле:

(П3.22)

где u_N - средняя по высоте скорость движения столба жидкости при x = b, м/с;

h_N - высота столба жидкости при x = b, м;

h_0 - начальная высота столба жидкости в резервуаре, м;

R - ширина резервуара, м.

График расчетной и экспериментальной зависимостей массовой доли перелившейся через обвалование жидкости Q от параметра a/h_0 представлен на рис. П3.3.

Рис. П3.2. Типичная картина движения жидкости в обваловании при квазимгновенном разрушении резервуара

Рис. П3.3. Зависимость доли перелившейся через обвалование жидкости Q от параметра a/h_0 : 1 - расчет; 2 - эксперимент

II. Количественная оценка массы горючих веществ, поступающих в окружающее пространство в результате возникновения пожароопасных ситуаций

6. Количество поступивших в окружающее пространство горючих веществ, которые могут образовать взрывоопасные газопаровоздушные смеси или проливы горючих сжиженных газов, легковоспламеняющихся и горючих жидкостей на подстилающей поверхности, определяется, исходя из следующих предпосылок:

а) происходит расчетная авария одного из резервуаров (аппаратов) или трубопровода;

б) все содержимое резервуара (аппарата, трубопровода) или часть продукта (при соответствующем обосновании) поступает в окружающее пространство. При этом в случае наличия на объекте нескольких аппаратов (резервуаров) расчет следует проводить для каждого резервуара (аппарата);

в) при разгерметизации резервуара (аппарата) происходит одновременно утечка веществ из трубопроводов, питающих резервуар по прямому и обратному потоку в течение времени, необходимого для отключения трубопроводов. Расчетное время отключения трубопроводов определяется в каждом конкретном случае, исходя из реальной обстановки, и должно быть минимальным с учетом паспортных данных на запорные устройства и их надежности, характера технологического процесса и вида расчетной аварии.

При отсутствии данных допускается расчетное время отключения технологических трубопроводов принимать равным:

времени срабатывания системы автоматики отключения трубопроводов согласно паспортным данным установки, если вероятность отказа системы автоматики не превышает 0,000001 в год или обеспечено резервирование ее элементов;

120 с, если вероятность отказа системы автоматики превышает 0,000001 в год и не обеспечено резервирование ее элементов;

300 с при ручном отключении;

г) в качестве расчетной температуры при пожароопасной ситуации с наземно расположенным оборудованием допускается принимать максимально возможную температуру воздуха в соответствующей климатической зоне, а при пожароопасной ситуации с подземно расположенным оборудованием - температуру грунта, условно равную максимальной среднемесячной температуре окружающего воздуха в наиболее теплое время года;

е) длительность испарения жидкости с поверхности пролива принимается равной времени ее полного испарения, но не более 3600 с. Для проливов жидкости до 20 кг время испарения допускается принимать равным 900 с.

Допускается использование показателей пожаровзрывоопасности для смесей веществ и материалов по наиболее опасному компоненту.

Разгерметизация надземного резервуара

7. Масса жидкости, поступившей в окружающее пространство при разгерметизации резервуара, определяется по формуле:

(П3.23)

где m_а - масса жидкости, кг;

ро_L - плотность жидкости, кг/м3;

V_R - объем жидкости в резервуаре, м3.

Масса жидкости, поступившей самотеком при полном разрушении наземного или надземного трубопровода, выходящего из резервуара, определяется по формулам:

(П3.24)

где

(П3.25)

где

(П3.26)

где G_L - начальный расход жидкости, истекающей из резервуара через разгерметизированный трубопровод, кг/с;

мю - коэффициент истечения;

тау - расчетное время отключения трубопроводов, связанных с местом разгерметизации, с;

d_P - диаметр трубопроводов, м (в случае различных диаметров трубопроводов, связанных с местом разгерметизации, объем выходящей жидкости рассчитывается для каждого трубопровода в отдельности);

L_i - длина i-го участка трубопровода от запорного устройства до места разгерметизации, м;

n - число участков трубопроводов, связанных с местом разгерметизации;

ДельтаP_R - напор столба жидкости в резервуаре, Па;

h_L - высота столба жидкости (от верхнего уровня жидкости в резервуаре до уровня места разгерметизации), м;

g - ускорение свободного падения, м/с2 (g = 9,81).

При проливе на неограниченную поверхность площадь пролива F_ПР (м2) жидкости определяется по формуле:

(П3.27)

где f_Р - коэффициент разлития, м(-1) (при отсутствии данных допускается принимать равным 20 м(-1) при проливе на грунтовое покрытие, 150 м(-1) при проливе на бетонное или асфальтовое покрытие);

V_Ж - объем жидкости, поступившей в окружающее пространство при разгерметизации резервуара, м3.

Масса паров ЛВЖ, выходящих через дыхательную арматуру

8. В случае наполнения резервуара масса паров определяется по формуле:

(П3.28)

где

(П3.29)

где m_V - масса выходящих паров ЛВЖ, кг;

ро_V - плотность паров ЛВЖ, кг/м3;

P_H - давление насыщенных паров ЛВЖ при расчетной температуре, кПа, определяемое по справочным данным;

P_0 - атмосферное давление, кПа (допускается принимать равным 101);

V_R - геометрический объем паровоздушного пространства резервуара (при отсутствии данных допускается принимать равным геометрическому объему резервуара), м3;

M - молярная масса паров ЛВЖ, кг/кмоль;

V_0 - мольный объем, равный 22,413 м3/кмоль;

t_0 - расчетная температура, °C.

Масса паров ЛВЖ при испарении со свободной поверхности в резервуаре

9. Масса паров ЛВЖ при испарении со свободной поверхности в резервуаре определяется по формуле:

(П3.30)

где G_V - расход паров ЛВЖ, кг/с, который определяется по формуле:

(П3.31)

где тау_E - время поступления паров из резервуара, с;

F_R - максимальная площадь поверхности испарения ЛВЖ в резервуаре, м2;

W - интенсивность испарения ЛВЖ, кг/(м2 x с) (определяется в соответствии с разделом VIII настоящего приложения).

III. Максимальные размеры взрывоопасных зон

10. Радиус R_НКПР (м) и высота Z_НКПР (м) зоны, ограничивающие область концентраций, превышающих нижний концентрационный предел распространения пламени (далее - НКПР), при неподвижной воздушной среде определяется по формулам:

для горючих газов (далее - ГТ):

(П3.32)
(П3.33)

где m_Г - масса ГГ, поступившего в открытое пространство при пожароопасной ситуации, кг;

ро_Г - плотность ГГ при расчетной температуре и атмосферном давлении, кг/м3;

C_НКПР - нижний концентрационный предел распространения пламени ГГ, % об.;

для паров ЛВЖ:

(П3.34)
(П3.35)

где m_П - масса паров ЛВЖ, поступивших в открытое пространство за время испарения, по п. 6 настоящего приложения, кг;

ро_П - плотность паров ЛВЖ при расчетной температуре, кПа;

P_H - давление насыщенных паров при расчетной температуре, кПа;

T - продолжительность поступления паров в открытое пространство, с;

C_НКПР - нижний концентрационный предел распространения пламени паров, % об.

За начало отсчета горизонтального размера зоны принимают внешние габаритные размеры пролива.

При необходимости может быть учтено влияние различных метеорологических условий на размеры взрывоопасных зон.

IV. Определение параметров волны давления при сгорании газо-, паро- или пылевоздушного облака

11. Методика количественной оценки параметров воздушных волн давления при сгорании газо-, паро- или пылевоздушного облака (далее - облако) распространяется на случаи выброса горючих газов, паров или пыли в атмосферу на производственных объектах.

Основными структурными элементами алгоритма расчетов являются:

определение ожидаемого режима сгорания облака;

расчет максимального избыточного давления и импульса фазы сжатия воздушных волн давления для различных режимов;

определение дополнительных характеристик взрывной нагрузки;

оценка поражающего воздействия.

Исходными данными для расчета параметров волн давления при сгорании облака являются:

вид горючего вещества, содержащегося в облаке;

концентрация горючего вещества в смеси С_Г ,

стехиометрическая концентрация горючего вещества с воздухом С_СТ ,

масса горючего вещества, содержащегося в облаке М_Т , с концентрацией между нижним и верхним концентрационным пределом распространения пламени. Допускается величину М_Т принимать равной массе горючего вещества, содержащегося в облаке, с учетом коэффициента Z участия горючего вещества во взрыве. При отсутствии данных коэффициент Z может быть принят равным 0,1. При струйном стационарном истечении горючего газа величину М_Т следует рассчитывать с учетом стационарного распределения концентраций горючего газа в струе;

удельная теплота сгорания горючего вещества Е_УД ;

скорость звука в воздухе С_0 (обычно принимается равной 340 м/с);

информация о степени загроможденности окружающего пространства;

эффективный энергозапас горючей смеси Е, который определяется по формуле:

(П3.36)

При расчете параметров сгорания облака, расположенного на поверхности земли, величина эффективного энергозапаса удваивается.

Определение ожидаемого режима сгорания облака

12. Ожидаемый режим сгорания облака зависит от типа горючего вещества и степени загроможденности окружающего пространства.

Классификация горючих веществ по степени чувствительности

13. Вещества, способные к образованию горючих смесей с воздухом, по степени своей чувствительности к возбуждению взрывных процессов разделены на четыре класса:

класс 1 - особо чувствительные вещества (размер детонационной ячейки менее 2 см);

класс 2 - чувствительные вещества (размер детонационной ячейки лежит в пределах от 2 до 10 см);

класс 3 - среднечувствительные вещества (размер детонационной ячейки лежит в пределах от 10 до 40 см);

класс 4 - слабочувствительные вещества (размер детонационной ячейки больше 40 см).

Классификация наиболее распространенных в промышленном производстве горючих веществ приведена в таблице П3.1. В случае, если вещество не внесено в классификацию, его следует классифицировать по аналогии с имеющимися в списке веществами, а при отсутствии информации о свойствах данного вещества его следует отнести к классу 1, т.е. рассматривать наиболее опасный случай.

Таблица П3.1

Класс 1 Класс 2 Класс 3 Класс 4
Ацетилен Акрилонитрил Ацетальдегид Бензол
Винилацетилен Акролеин Ацетон Декан
Водород Бутан Бензин о-Дихлорбензол
Гидразин Бутилен Винилацетат Додекан
Изопропилнитрат Бутадиен Винилхлорид Метан
Метилацетилен 1,3-Пентадиен Гексан Метилбензол
Нитрометан Пропан Изооктан Метилмеркаптан
Окись пропилена Пропилен Метиламин Метилхлорид
Окись этилена Сероуглерод Метилацетат Окись углерода
Этилнитрат Этан Метилбутилкетон Этиленбензол
Этилен Метилпропилкетон
Эфиры: Метилэтилкетон
диметиловый Октан
дивиниловый Пиридин
метилбутиловый Сероводород
Спирты:
Широкая фракция метиловый
легких углеводоэтиловый
родов пропиловыи
амиловый
изобутиловый
изопропиловый
Циклогексан
Этилформиат
Этилхлорид

14. При оценке масштабов поражения волнами давления должно учитываться различие химических соединений по теплоте сгорания, используемой для расчета полного запаса энерговыделения. Для типичных углеводородов принимается в расчет значение удельной теплоты сгорания Е_УД0 = 44 МДж/кг. Для иных горючих веществ в расчетах используется удельное энерговыделение Е_УД = бета Е_УД0 . Здесь бета - корректировочный параметр. Для условно выделенных классов горючих веществ величины параметра бета представлены в таблице П3.2.

Таблица П3.2

Классы горючих веществ Бета Классы горючих веществ Бета
Класс 1 Класс 3
Ацетилен 1,1 Кумол 0,84
Метилацетилен 1,05 Метиламин 0,70
Винилацетилен 1,03 Спирты:
Метиловый 0,45
Окись этилена 0,62 Этиловый 0,61
Пропиловый 0,69
Гидразин 0,44 Амиловый 0,79
Изопропилнитрат 0,41
Этилнитрат 0,30
Водород 2,73 Циклогексан 1
Нитрометан 0,25 Ацетальальдегид 0,56
Класс 2 Винилацетат 0,51
Этилен 1,07 Бензин 1
Диэтилэфир 0,77 Гексан 1
Дивинилэфир 0,77 Изооктан 1
Окись пропилена 0,7 Пиридин 0,77
Акролеин 0,62 Циклопропан 1
Сероуглерод 0,32 Этиламин 0,80
Бутан 1 Класс 4
Бутилен 1
Бутадиен 1 Метан 1,14
1,3-Пентадиен 1 Трихлорэтан 0,15
Этан 1 Метилхлорид 0,12
Диметилэфир 0,66 Бензол 1
Диизопропиловый эфир 0,82 Декан 1
ШФЛУ 1 Додекан 1
Пропилен 1 Метилбензол 1
Пропан 1 Метилмеркаптан 0,53
Класс 3 Окись углерода 0,23
Винилхлорид 0,42 Дихлорэтан 0,24
Сероводород 0,34 Дихлорбензол 0,42
Ацетон 0,65 Трихлорэтан 0,14
Классификация окружающего пространства по степени загроможденности

15. Характером загроможденности окружающего пространства в значительной степени определяется скорость распространения пламени при сгорании облака и, следовательно, параметры волны давления. Характеристики загроможденности окружающего пространства разделяются на четыре класса:

класс I - наличие длинных труб, полостей, каверн, заполненных горючей смесью, при сгорании которой возможно ожидать формирование турбулентных струй продуктов сгорания, имеющих размеры не менее трех размеров детонационной ячейки данной смеси. Если размер детонационной ячейки для данной смеси не известен, то минимальный характерный размер струй принимается равным 5 см для веществ класса 1, 20 см для веществ класса 2, 50 см для веществ класса 3 и 150 см для веществ класса 4;

класс II - сильно загроможденное пространство: наличие полузамкнутых объемов, высокая плотность размещения технологического оборудования, лес, большое количество повторяющихся препятствий;

класс III - средне загроможденное пространство: отдельно стоящие технологические установки, резервуарный парк;

класс IV - слабо загроможденное и свободное пространство.

Классификация режимов сгорания облака

16. Для оценки воздействия сгорания облака возможные режимы сгорания разделяются на шесть классов по диапазонам скоростей их распространения следующим образом:

класс 1 - детонация или горение со скоростью фронта пламени 500 м/с и более;

класс 2 - дефлаграция, скорость фронта пламени 300 - 500 м/с;

класс 3 - дефлаграция, скорость фронта пламени 200 - 300 м/с;

класс 4 - дефлаграция, скорость фронта пламени 150 - 200 м/с;

класс 5 - дефлаграция, скорость фронта пламени определяется по формуле:

(П3.37)

где k_1 - константа, равная 43;

М - масса горючего вещества, содержащегося в облаке, кг;

класс 6 - дефлаграция, скорость фронта пламени определяется по формуле:

(П3.38)

где k_2 - константа, равная 26;

М - масса горючего вещества, содержащегося в облаке, кг.

17. Ожидаемый режим сгорания облака определяется с помощью таблицы П3.3, в зависимости от класса горючего вещества и класса загроможденности окружающего пространства.

Таблица П3.3

Класс горючего вещества Класс загроможденности окружающего пространства
I II III IV
1 1 1 2 3
2 1 2 3 4
3 2 3 4 5
4 3 4 5 6

При определении максимальной скорости фронта пламени для режимов сгорания 2 - 4 классов дополнительно рассчитывается видимая скорость фронта пламени по соотношению (П3.37). В том случае, если полученная величина больше максимальной скорости, соответствующей данному классу, она принимается за верхнюю границу диапазона ожидаемых скоростей сгорания облака.

Расчет максимального избыточного давления и импульса фазы сжатия воздушных волн давления

18. Параметры воздушных волн давления (избыточное давление ДельтаР и им пульс фазы сжатия I(+)) в зависимости от расстояния от центра облака рассчитываются исходя из ожидаемого режима сгорания облака.

Класс 1 режима сгорания облака

19. Рассчитывается соответствующее безразмерное расстояние по формуле:

(П3.39)

где R - расстояние от центра облака, м;

P_0 - атмосферное давление, Па;

E - эффективный энергозапас смеси, Дж.

Величины безразмерного давления P_x и импульс фазы сжатия I_x определяются по формулам (для газопаровоздушных смесей):

(П3.40)
(П3.41)

Формулы (П3.40, П3.41) справедливы для значений R_x > 0,2. В случае, если R_x < 0,2, то P_x = 18, а в формулу (П3.41) вместо R_x подставляется величина R_x = 0,14.

Размерные величины избыточного давления и импульса фазы сжатия определяются по формулам:

(П3.42)
(П3.43)
Классы 2 - 6 режима сгорания облака

20. Рассчитывается безразмерное расстояние R_x от центра облака по формуле (П3.39).

Рассчитываются величины безразмерного давления (P_x1 ) и импульса фазы сжатия I_x1 по формулам:

(П3.44)
(П3.45)
(П3.46)

где сигма - степень расширения продуктов сгорания (для газопаровоздушных смесей допускается принимать равной 7, для пылевоздушных смесей - 4);

u - видимая скорость фронта пламени, м/с.

В случае дефлагарации пылевоздушного облака величина эффективного энергозапаса умножается на коэффициент (сигма - 1)/сигма.

Формулы (П3.44), (П3.45) справедливы для значений R_x больших величины R_кр1 = 0,34, в случае, если R_x < R_кр1 , в формулы (П3.44), (П3.45) вместо R_x подставляется величина R_кр1 .

Размерные величины избыточного давления и импульса фазы сжатия определяются по формулам (П3.42), (П3.43). При этом в формулы (П3.42), (П3.43) вместо P_x и I_x подставляются величины P_x1 и I_x1 .

V. Параметры волны давления при взрыве резервуара с перегретой жидкостью или сжиженным газом при воздействии на него очага пожара

21. Избыточное давление Дельта_Р и импульс I(+) в волне давления, образующиеся при взрыве резервуара с перегретой ЛВЖ, ГЖ или сжиженным углеводородным газом (далее - СУГ) в очаге пожара, определяются по формулам:

(П3.47)
(П3.48)
(П3.49)

где r - расстояние от центра резервуара, м;

E_eff - эффективная энергия взрыва, рассчитываемая по формуле:

(П3.50)

где k - доля энергии волны давления (допускается принимать равной 0,5);

C_p - удельная теплоемкость жидкости (допускается принимать равной 2000 Дж/(кг x К);

m - масса ЛВЖ, ГЖ или СУГ, содержащаяся в резервуаре, кг;

T - температура жидкой фазы, К;

T_b - нормальная температура кипения, К.

При наличии в резервуаре предохранительного устройства (клапана или мембраны) величина T определяется по формуле:

(П3.51)

где P_val - давление срабатывания предохранительного устройства;

A, B, C_А - константы уравнения зависимости давления насыщенных паров жидкости от температуры (константы Антуана), определяемые по справочной литературе. Единицы измерения P_val (кПа, мм рт. ст., атм) должны соответствовать используемым константам Антуана.

VI. Интенсивность теплового излучения

22. В настоящем разделе приводятся методы расчета интенсивности теплового излучения от пожара пролива на поверхность, огненного шара, а также радиуса воздействия продуктов сгорания паровоздушного облака в случае пожара-вспышки.

Пожар пролива

23. Интенсивность теплового излучения q (кВт/м2) для пожара пролива ЛВЖ, ГЖ или СУГ определяется по формуле:

(П3.52)

где E_f - среднеповерхностная интенсивность теплового излучения пламени, кВт/м2;

F_q - угловой коэффициент облученности;

тау - коэффициент пропускания атмосферы.

Значение E_f принимается на основе имеющихся экспериментальных данных или по таблице П3.4. При отсутствии данных для нефтепродуктов допускается принимать величину E_f равной 40 кВт/м2.

Таблица П3.4

Среднеповерхностная плотность теплового излучения пламени в зависимости от диаметра очага и удельная массовая скорость выгорания для некоторых жидких углеводородных топлив

Топливо E_f , кВт/м2, при d, м m', кг/ (м2 x с)
10 20 30 40 50
Сжиженный природный
газ (далее - СПГ) 220 180 150 130 120 0,08
СУГ (пропан-бутан) 80 63 50 43 40 0,1
Бензин 60 47 35 28 25 0,06
Дизельное топливо 40 32 25 21 18 0,04
Нефть 25 19 15 12 10 0,04

Примечание: для диаметров очага менее 10 м или более 50 м следует принимать E_f такой же, как и для очагов диаметром 10 м и 50 м соответственно.

Угловой коэффициент облученности F_q определяется по формуле:

(П3.53)

где F_V , F_H - факторы облученности для вертикальной и горизонтальной площадок соответственно, которые определяются по формулам:

(П3.54)
(П3.55)
(П3.56)
(П3.57)
(П3.58)
(П3.59)

где r - расстояние от геометрического центра пролива до облучаемого объекта, м;

d - эффективный диаметр пролива, м;

H - высота пламени, м.

Эффективный диаметр пролива d (м) рассчитывается по формуле:

(П3.60)

где F - площадь пролива, м2.

Высота пламени H (м) определяется по формуле:

(П3.61)

где m - удельная массовая скорость выгорания топлива, кг/(м2 x с);

ро_а - плотность окружающего воздуха, кг/м3;

g - ускорение свободного падения (9,81 м/с2).

Коэффициент пропускания атмосферы тау для пожара пролива определяется по формуле:

(П3.62)

При необходимости может быть учтено влияние ветра на форму пламени.

Огненный шар

24. Интенсивность теплового излучения q (кВт/м2) для огненного шара определяется по формуле (П3.52).

Величина E_f определяется на основе имеющихся экспериментальных данных.

Допускается принимать E_f равной 450 кВт/м2.

Значение F_q определяется по формуле:

(П3.63)

где H - высота центра огненного шара, м;

D_s - эффективный диаметр огненного шара, м;

r - расстояние от облучаемого объекта до точки на поверхности земли непосредственно под центром огненного шара, м.

Эффективный диаметр огненного шара D_S (м) определяется по формуле:

(П3.64)

где m - масса продукта, поступившего в окружающее пространство, кг.

Величину H допускается принимать равной D_S / 2.

Время существования огненного шара t_S (с) определяется по формуле:

(П3.65)

Коэффициент пропускания атмосферы тау для огненного шара рассчитывается по формуле:

(П3.66)
VII. Определение радиуса воздействия продуктов сгорания паровоздушного облака в случае пожара-вспышки

25. В случае образования паровоздушной смеси в незагроможденном технологическим оборудованием пространстве и его зажигании относительно слабым источником (например, искрой) сгорание этой смеси происходит, как правило, с небольшими видимыми скоростями пламени. При этом амплитуды волны давления малы и могут не приниматься во внимание при оценке поражающего воздействия. В этом случае реализуется так называемый пожар-вспышка, при котором зона поражения высокотемпературными продуктами сгорания паровоздушной смеси практически совпадает с максимальным размером облака продуктов сгорания (т.е. поражаются в основном объекты, попадающие в это облако). Радиус воздействия высокотемпературных продуктов сгорания паровоздушного облака при пожаре-вспышке R_F определяется формулой:

(П3.67)

где R_НКПР - горизонтальный размер взрывоопасной зоны, определяемый по п. 10 настоящего приложения.

VIII. Испарение жидкости и СУГ из пролива

26. Интенсивность испарения W (кг/(м2 x с)) для ненагретых жидкостей с определяется по формуле:

(П3.68)

где эта - коэффициент, принимаемый для помещений по таблице П3.5 в зависимости от скорости и температуры воздушного потока над поверхностью испарения. При проливе жидкости вне помещения допускается принимать эта = 1;

M - молярная масса жидкости, кг/кмоль;

P_H - давление насыщенного пара при расчетной температуре жидкости, кПа.

Таблица П3.5

Скорость воздушного потока, м/с Значение коэффициента эта при температуре t (°C) воздуха
10 15 20 30 35
0 1,0 1,0 1,0 1,0 1,0
0,1 3,0 2,6 2,4 1,8 1,6
0,2 4,6 3,8 3,5 2,4 2,3
0,5 6,6 5,7 5,4 3,6 3,2
1,0 10,0 8,7 7,7 5,6 4,6

27. При выбросе СУГ из оборудования, в котором жидкость находится под давлением, часть продукта за счет внутренней энергии мгновенно испаряется, образуя с капельками жидкости облако аэрозоля. Массовая доля мгновенно испарившейся жидкости дельта определяется по формуле:

(П3.69)

где C_P - удельная теплоемкость СУГ, Дж/(кг x К);

T_a - температура окружающего воздуха, К;

T_g - температура кипения СУГ при атмосферном давлении, К;

L_g - удельная теплота парообразования СУГ, Дж/кг.

Принимается, что при дельта >/= 0,35 вся масса жидкости, находящаяся в оборудовании, за счет взрывного характера испарения переходит в парокапельное облако.

При дельта < 0,35 оставшаяся часть жидкости испаряется с поверхности пролива за счет потока тепла от подстилающей поверхности и воздуха.

Интенсивность испарения жидкости со свободной поверхности W (кг/(м2 x с)) определяется по формуле:

(П3.70)

где ламбда_S - коэффициент теплопроводности материала, на поверхность которого разливается жидкость, Вт/(м x К);

C_S - удельная теплоемкость материала, Дж/(кг x К);

ро_S - плотность материала, кг/м3;

T_0 - начальная температура материала, К;

t - текущее время с момента начала испарения, с (но не менее 10 с);

ламбда_a - коэффициент теплопроводности воздуха при температуре T_0 ;

u - скорость воздушного потока над поверхностью испарения, м/с;

d - характерный диаметр пролива, м;

v_a - кинематическая вязкость воздуха при T_0 , м2/с.

IX. Размеры факела при струйном горении

28. При струйном истечении сжатых горючих газов, паровой и жидкой фазы СУГ и СПГ возникает опасность образования диффузионных факелов.

Длина факела L_F (м) при струйном горении определяется по формуле:

(П3.71)

где G - расход продукта, кг/с;

K - эмпирический коэффициент, который при истечении сжатых газов принимается равным 12,5, при истечении паровой фазы СУГ или СПГ равным 13,5, при истечении жидкой фазы СУГ или СПГ равным 15.

Длина факела при струйном истечении горючих жидкостей определяется дальностью (высотой) струи жидкости.

Ширина факела D_F (м) при струйном горении определяется по формуле:

(П3.72)

29. При проведении оценок пожарной опасности горящего факела при струйном истечении сжатых горючих газов, паровой и жидкой фазы СУГ и СПГ допускается принимать следующие допущения:

зона непосредственного контакта пламени с окружающими объектами, т.е. область наиболее опасного теплового воздействия, интенсивность которого может быть принята 100 кВт/м2, определяется размерами факела;

длина факела L_F не зависит от направления истечения продукта и скорости ветра;

наибольшую опасность представляют горизонтальные факелы, условную вероятность реализации которых следует принимать равной 0,67;

поражение человека в горизонтальном факеле происходит в 30°-м секторе с радиусом, равным длине факела;

воздействие горизонтального факела на соседнее оборудование, приводящее к его разрушению (каскадному развитию аварии), происходит в 30°-м секторе, ограниченном радиусом, равным L_F ;

за пределами указанного сектора на расстояниях от L_F до 1,5 L_F тепловое излучение от горизонтального факела составляет 10 кВт/м2;

тепловое излучение от вертикальных факелов может быть определено по формулам (П3.52) - (П3.59), (П3.62), принимая H равным L_F , d равным D_F , а E_f по табл. П3.4 в зависимости от вида топлива. При отсутствии данных допускается E_f принимать равной 200 кВт/м2;

при истечении жидкой фазы СУГ или СПГ из отверстия с эквивалентным диаметром до 100 мм при мгновенном воспламенении происходит полное сгорание истекающего продукта в факеле без образования пожара пролива;

область возможного воздействия пожара-вспышки при струйном истечении совпадает с областью воздействия факела (30°-й сектор, ограниченный радиусом, равным L_F );

при мгновенном воспламенении струи газа возможность формирования волн давления допускается не учитывать.

Приложение N 4
к пункту 20 Методики

  • Главная
  • ПРИКАЗ МЧС РФ от 10.07.2009 N 404 "ОБ УТВЕРЖДЕНИИ МЕТОДИКИ ОПРЕДЕЛЕНИЯ РАСЧЕТНЫХ ВЕЛИЧИН ПОЖАРНОГО РИСКА НА ПРОИЗВОДСТВЕННЫХ ОБЪЕКТАХ"