Последнее обновление: 21.12.2024
Законодательная база Российской Федерации
8 (800) 350-23-61
Бесплатная горячая линия юридической помощи
- Главная
- ПОСТАНОВЛЕНИЕ Правительства РФ от 29.01.2007 N 54 "О ФЕДЕРАЛЬНОЙ ЦЕЛЕВОЙ ПРОГРАММЕ "НАЦИОНАЛЬНАЯ ТЕХНОЛОГИЧЕСКАЯ БАЗА" НА 2007-2011 ГОДЫ"
ПОСТАНОВЛЕНИЕ Правительства РФ от 29.01.2007 N 54 "О ФЕДЕРАЛЬНОЙ ЦЕЛЕВОЙ ПРОГРАММЕ "НАЦИОНАЛЬНАЯ ТЕХНОЛОГИЧЕСКАЯ БАЗА" НА 2007-2011 ГОДЫ"
Правительство Российской Федерации постановляет:
1. Утвердить прилагаемую федеральную целевую программу "Национальная технологическая база" на 2007-2011 годы.
2. Министерству экономического развития и торговли Российской Федерации и Министерству финансов Российской Федерации при формировании проекта федерального бюджета на соответствующий год включать Программу, указанную в пункте 1 настоящего постановления, в перечень федеральных целевых программ, подлежащих финансированию за счет средств федерального бюджета.
Председатель Правительства
Российской Федерации
М.ФРАДКОВ
УТВЕРЖДЕНА
Постановлением Правительства
Российской Федерации
от 29 января 2007 г. N 54
Наименование Программы | - федеральная целевая программа "Национальная технологическая база" на 2007-2011 годы |
Дата принятия решения о разработке Программы | - распоряжение Правительства Российской Федерации от 18 декабря 2006 г. N 1761-р |
Государственные заказчики Программы | - Федеральное агентство по промышленности, Федеральное агентство по атомной энергии, Федеральное агентство по науке и инновациям, Федеральное агентство по образованию, Федеральное космическое агентство, Российская академия наук, Сибирское отделение Российской академии наук |
Государственный заказчик - координатор Программы и подпрограммы | - Министерство промышленности и энергетики Российской Федерации |
Основные разработчики Программы | - Министерство промышленности и энергетики Российской Федерации, |
Федеральное агентство по промышленности, | |
Федеральное агентство по атомной энергии, | |
Федеральное агентство по науке и инновациям, | |
Федеральное космическое агентство, | |
Российская академия наук | |
Цель и задачи Программы | - цель Программы - обеспечение технологического развития отечественной промышленности на основе создания и внедрения прорывных, ресурсосберегающих, экологически безопасных промышленных технологий для производства конкурентоспособной наукоемкой продукции. |
Задачи Программы: | |
создание новых передовых технологий и оборудования, необходимого для их реализации, на уровне экспериментальных линий, демонстрационных установок и (или) опытных образцов, подтверждающих готовность технологических решений к промышленной реализации; | |
разработка программ (планов) внедрения разработанных технологий в производство с оценкой необходимых затрат и источников их финансирования; | |
активизация процессов коммерциализации новых технологий; | |
создание перспективного научно-технологического задела для разработки наукоемкой продукции; решение проблем улучшения экологической ситуации в стране | |
Важнейшие целевые индикаторы и показатели | - количество переданных в производство технологий, обеспечивающих конкурентоспособность конечного продукта, - 215-246 (здесь и далее - за весь период действия программы без учета подпрограммы); |
количество патентов и других документов, удостоверяющих новизну технологических решений и закрепляющих права на объекты интеллектуальной собственности, полученные в ходе выполнения Программы, в том числе права Российской Федерации, - 206-241; | |
количество разработанных технологий, соответствующих мировому уровню или превышающих его, - 195-233 | |
Сроки и этапы реализации Программы | - Программа выполняется в 2007-2011 годах в два этапа: |
I этап (2007-2009 годы) - выполнение быстрореализуемых проектов, базирующихся на уже имеющемся научно-техническом заделе; | |
II этап (2008-2011 годы) - выполнение сложных комплексных проектов по созданию перспективных прорывных технологий, реализуемых в новых поколениях наукоемкой продукции и ориентированных на недопущение технологического отставания от передовых стран | |
Подпрограмма | - подпрограмма "Развитие электронной компонентной базы" на 2007-2011 годы |
Объемы и источники финансирования | - всего по Программе (с подпрограммой) - 99458 млн. рублей (в ценах соответствующих лет), в том числе: а) за счет средств федерального бюджета - 49549 млн. рублей, из них: |
на научно-исследовательские и опытно-конструкторские работы - 35929 млн. рублей; | |
на капитальные вложения - 13620 млн. рублей; | |
б) за счет средств внебюджетных источников - 49909 млн. рублей. Всего на 2007 год - 11200 млн. рублей, в том числе: | |
а) за счет средств федерального бюджета - 6300 млн. рублей, из них: | |
на научно-исследовательские и опытно-конструкторские работы - 5100 млн. рублей; | |
на государственные капитальные вложения - 1200 млн. рублей; | |
б) за счет средств внебюджетных источников - 4900 млн. рублей. | |
Всего по подпрограмме - за счет средств федерального бюджета - 23200 млн. рублей (в ценах соответствующих лет), из них: | |
на научно-исследовательские и опытно-конструкторские работы - 15880 млн. рублей; | |
на капитальные вложения - 7320 млн. рублей. | |
Всего по подпрограмме на 2007 год - 3800 млн. рублей, из них: | |
на научно-исследовательские и опытно-конструкторские работы - 2600 млн. рублей; | |
на капитальные вложения - 1200 млн. рублей | |
Ожидаемые конечные результаты реализации | - выполнение Программы в полном объеме позволит: |
программы и показатели социально-экономической эффективности | создать промышленно-технологические основы для производства нового поколения конкурентоспособной наукоемкой продукции мирового уровня в области важнейших технических систем (авиационной и морской техники, машиностроительного и энергетического оборудования, информационно-управляющих систем), электронной компонентной базы, специальных материалов и другой высокотехнологической продукции, что в целом обеспечит технологические аспекты безопасности страны и развитие ее экономики; |
сформировать технологические предпосылки для повышения темпов экономического роста за счет увеличения в структуре экономики доли продукции с высоким уровнем добавленной стоимости; | |
обеспечить сохранение и создание новых рабочих мест в организациях высокотехнологичных отраслей промышленности; | |
сократить общее технологическое отставание России от передовых стран с сохранением и развитием приоритетного положения отечественных разработок по ряду важных технологических направлений; расширить возможности для равноправного международного сотрудничества в сфере высоких технологий; | |
создать эффективные средства защиты населения от опасных быстрораспространяющихся инфекций и биотерроризма, а также сформировать технологические основы развития и совершенствования систем защиты предприятий, населения и территорий России от поражения токсическими веществами в результате возможных террористических актов, техногенных и природных аварий и катастроф; | |
обеспечить технологические возможности для улучшения экологической обстановки за счет применения высокоэффективных методов и средств контроля и нейтрализации вредных выбросов в окружающую среду; | |
обеспечить в 2007-2011 годах поступление в федеральный бюджет налогов в размере 70848,7 млн. рублей, что превысит размер бюджетных расходов за тот же период и создаст бюджетный эффект в размере 38388,1 млн. рублей; | |
обеспечить индекс доходности (рентабельность) бюджетных ассигнований 2,18, а окупаемость бюджетных ассигнований (период возврата) в течение 1,5 года |
Федеральная целевая программа "Национальная технологическая база" на 2007-2011 годы (далее - Программа) разработана в соответствии с распоряжением Правительства Российской Федерации от 18 декабря 2006 г. N 1761-р.
Основной проблемой, на решение которой направлена Программа, является недостаточная конкурентоспособность отечественной наукоемкой промышленности, связанная с отставанием уровня ее технологического развития от уровня передовых стран.
Возникновение этой проблемы имеет достаточно продолжительную историю. Более 10 лет (с начала 1990-х годов) сколько-нибудь значимые средства в технологическое развитие наукоемких отраслей промышленности не вкладывались. В результате нарастающими темпами происходило физическое и моральное старение активной части основных производственных фондов предприятий. Работы по созданию и внедрению в производство новых высокоэффективных технологий, необходимых для выпуска конкурентоспособной инновационной продукции, практически не финансировались.
Все это на фоне резкого роста технологической оснащенности промышленности передовых стран на базе освоения высоких технологий привело к тому, что технологическое отставание отечественной промышленности достигло критического уровня.
Ситуация начала меняться к лучшему только с начала 2000-х годов, когда были приняты решения о разработке и реализации ряда федеральных целевых программ технологической направленности. Среди этих программ особое место занимала федеральная целевая программа "Национальная технологическая база" на 2002-2006 годы, непосредственно ориентированная на разработку критических базовых технологий, необходимых для создания и производства конкурентоспособной наукоемкой продукции. Тем не менее до настоящего времени проблема остается все еще нерешенной.
Масштаб и сложность проблемы, ее высокая общегосударственная значимость требуют применения адекватных методов и механизмов, обеспечивающих реализацию первоочередных задач. В настоящее время существует единственный достаточно отработанный и эффективный механизм решения подобных проблем - федеральная целевая программа, позволяющая сконцентрировать ресурсы на приоритетных направлениях и согласовать мероприятия по целевым задачам, срокам и ресурсам.
В Основах политики Российской Федерации в области развития науки и технологий на период до 2010 года и дальнейшую перспективу, утвержденных Президентом Российской Федерации, одним из важнейших механизмов решения проблем в сфере науки и технологий была определена федеральная целевая программа "Национальная технологическая база" на 2002-2006 годы.
Проведенный анализ хода и результатов реализации федеральной целевой программы "Национальная технологическая база" на 2002-2006 годы позволяет утверждать, что эта программа достаточно успешно выполнена в целом. Однако в настоящее время уже очевидна необходимость ее развития в виде новой программы, что обусловлено следующим:
развитие технологий в мире является непрерывным, постоянно обновляющимся процессом;
вследствие ряда объективных причин, связанных главным образом с недостаточным финансированием и ограниченным периодом реализации федеральной целевой программы "Национальная технологическая база" на 2002-2006 годы, не удалось решить такую важную задачу, поставленную Президентом Российской Федерации, как обеспечение технологической независимости и информационной безопасности Российской Федерации в области развития электронной компонентной базы, используемой в стратегически значимых системах. Решение этой задачи в полном объеме должно стать одним из главных приоритетов Программы;
в последнее время в мире проявились и стали актуальными новые тенденции и направления технологического развития, которые либо вообще не были учтены в действовавшей программе, либо были затронуты в ней лишь фрагментарно;
обострение конкурентной борьбы на внешнем, а также (в связи с предстоящим присоединением России к Всемирной торговой организации) и на внутреннем рынках с учетом поставленной руководством страны задачи резкого увеличения темпов роста валового внутреннего продукта требует интенсификации инновационных процессов, ускорения разработки и передачи в производство новых передовых технологий, которые могли бы составить технологическую основу для создания и производства конкурентоспособной наукоемкой продукции, что может быть эффективно осуществлено в рамках специально ориентированной на эти цели федеральной целевой программы.
Обозначенная проблема и мероприятия Программы непосредственно связаны с приоритетными задачами социально-экономического развития Российской Федерации и направлены на решение следующих системных задач:
преодоление технологического отставания России от ведущих стран мира, недостаточной инновационной активности российских компаний, повышение уровня значительной части научно-технических разработок;
развитие высокотехнологических секторов российской экономики в целях обеспечения национальной безопасности и конкурентоспособности отечественных товаров;
создание условий для многократного увеличения объемов выпуска наукоемкой продукции;
замещение импортной продукции и переход на этой основе в стадию стабильного роста инновационно активного промышленного производства;
обеспечение устойчивых темпов роста промышленного производства;
обеспечение позитивных структурных сдвигов, направленных на увеличение доли перерабатывающих отраслей в общем объеме продукции и доли высокотехнологичной наукоемкой продукции в перерабатывающих отраслях;
закрепление конкурентных позиций отечественных товаропроизводителей инновационной продукции и высоких технологий на внутреннем и внешнем рынках.
Переход к инновационному пути развития страны на основе избранных приоритетов определен в качестве главной цели государственной научно-технологической политики в утвержденных Президентом Российской Федерации Основах политики Российской Федерации в области развития науки и технологий на период до 2010 года и дальнейшую перспективу.
Программа направлена на создание технологического фундамента инновационного развития и удовлетворение потребностей отечественной наукоемкой промышленности в новых базовых технологиях, обеспечивающих новые функциональные качества и конкурентоспособность производимой продукции. Программа должна стать катализатором коммерциализации результатов научно-технической деятельности и повышения уровня капитализации предприятий и организаций - разработчиков новых технологий за счет введения результатов научно-технической деятельности в хозяйственный оборот.
В этих целях мероприятия Программы ориентированы на технологическое обеспечение реализации следующих крупных комплексных проектов, требования к которым вытекают из анализа задач социально-экономического развития страны, обеспечения национальной безопасности и потребностей бизнеса:
освоение водородной энергетики;
переход к промышленному производству и управлению материальными потоками на основе электронного документооборота и радиочастотной идентификации (интегрированная логистика);
создание перспективной отечественной транспортной техники с использованием международной кооперации;
обеспечение здоровья нации и защиты человека от биотерроризма и поражения токсичными веществами;
создание нового поколения морской техники, функционирующей в экстремальных природных условиях;
создание перспективных электронных технических систем различного назначения на основе применения отечественной электронной компонентной базы.
Предполагается, что реализация указанных комплексных проектов будет осуществляться на основе принципов частно-государственного партнерства.
При этом Программа предусматривает разработку и практическое внедрение критических базовых технологий, необходимых для реализации этих проектов, а также для создания и производства конкурентоспособной наукоемкой продукции мирового уровня.
Для решения поставленных задач необходимо обеспечить создание и промышленное освоение технологий по следующим направлениям:
общемашиностроительные технологии;
базовые технологии энергетики;
технологии перспективных двигательных установок;
химические технологии и катализ;
технологии морской техники, функционирующей в экстремальных природных условиях;
технологии обеспечения безопасности жизнедеятельности, диагностики и защиты человека от опасных заболеваний.
Кроме того, предусматривается выполнение подпрограммы "Развитие электронной компонентной базы" на 2007-2011 годы, входящей в состав Программы (далее - подпрограмма).
Необходимость разработки подпрограммы в области электронной компонентной базы диктуется высокой значимостью этого направления для технологической инфраструктуры страны, значительным объемом бюджетного финансирования, комплексностью решаемых проблем, что требует реализации значительного числа взаимосвязанных программных мероприятий, четкой координации и управления в рамках отдельной подпрограммы.
Протоколом совещания Совета Безопасности Российской Федерации от 1 апреля 2006 г., утвержденным Президентом Российской Федерации, предусматривается разработка подпрограммы в составе Программы.
Мероприятия Программы и подпрограммы сформированы с учетом необходимости обеспечения их взаимосвязи с таким расчетом, чтобы результаты, полученные в ходе реализации мероприятий по одним направлениям, могли использоваться в интересах решения проблем по другим направлениям, предусмотренным Программой и подпрограммой.
Инновационный процесс включает в себя:
фундаментальные исследования и прикладные поисковые работы ("пробирочные" технологии);
разработку промышленных технологий;
разработку и производство инновационного продукта.
Программа реализует второй этап инновационной цепочки - разработку технологий, предназначенных для непосредственного использования в промышленности.
Последующие этапы инновационного процесса являются сферой деятельности бизнес-сообщества. При этом государственная поддержка конкретных разработок осуществляется через ведомственные (отраслевые) программы, использующие результаты реализации федеральной целевой программы "Национальная технологическая база" на 2002-2006 годы.
Конечным продуктом Программы являются промышленные технологии, предназначенные для применения в коммерческих проектах, связанных с производством конкретного инновационного продукта.
Мероприятия Программы формируются с таким расчетом, чтобы исключить возможное дублирование других программ технологической направленности.
Реализация Программы будет осуществляться на основе следующих принципов:
комплексность решения наиболее актуальных проблем научно-технического и технологического развития страны;
сосредоточение основных усилий на развитии базовых технологий, имеющих межотраслевое и многоотраслевое значение для повышения технологического уровня и конкурентоспособности отечественной промышленности;
непрерывность инновационного цикла, реализуемого на основе кооперации исполнителей, - от фундаментальных исследований и разработки экспериментальных критических технологий до опытно-конструкторской разработки промышленных технологий, предназначенных для создания образцов наукоемкой продукции нового поколения;
гибкость выбора конкретных проектов, реализуемых в рамках Программы, возможность межотраслевого перераспределения бюджетных средств и их концентрация на приоритетных направлениях для обеспечения наибольшей эффективности Программы;
обеспечение эффективного управления реализацией Программы и контроля за целевым использованием выделенных средств;
конкурсный отбор проектов для реализации в рамках Программы;
создание условий для продуктивного сотрудничества государства и частного бизнеса, основанных на сочетании экономических интересов и соблюдении взаимных обязательств.
В Программе используются понятия, которые означают следующее:
"технология" - совокупность научно-технических знаний, процессов, материалов и оборудования, которые могут быть использованы при разработке, производстве или эксплуатации продукции;
"базовая технология" - технология, лежащая в основе создания широкого спектра наукоемкой продукции и прямо не связанная с каким-либо видом конкретных технических систем;
"критическая технология" - технология, разработка и использование которой обеспечивают интересы государства в сфере национальной безопасности, экономического и социального развития;
"национальная технологическая база" - совокупность технологий, важнейших научно-производственных комплексов и интеллектуального потенциала их персонала в приоритетных областях науки, техники и промышленности, обеспечивающая безопасность и инновационное развитие страны.
II. Цель и задачи Программы, сроки и этапы ее реализации, а также целевые индикаторы и показатели ПрограммыЦелью Программы является обеспечение технологического развития отечественной промышленности на основе создания и внедрения прорывных, ресурсосберегающих, экологически безопасных промышленных технологий для производства конкурентоспособной наукоемкой продукции.
Для реализации указанной цели будут решены следующие краткосрочные и долгосрочные задачи:
создание новых передовых технологий и оборудования, необходимого для их реализации, на уровне пилотных линий, демонстрационных установок и (или) опытных образцов, подтверждающих готовность технологических решений к промышленной реализации;
разработка программ (планов) внедрения разработанных технологий в производство с оценкой необходимых затрат и источников их покрытия;
активизация процессов коммерциализации новых технологий, в том числе путем введения в хозяйственный оборот прав на эти технологии как на результаты научно-технической деятельности;
организация межотраслевой кооперации и обмена информацией, получение синергетического эффекта;
создание перспективного научно-технологического задела для разработки наукоемкой продукции следующих поколений;
решение проблем улучшения экологической ситуации в стране.
Выполнение Программы планируется осуществить в 2007-2011 годах. Планировать реализацию Программы на более длительный срок нецелесообразно вследствие динамичности мировых тенденций и изменения приоритетов в области развития высоких технологий.
Программа реализуется в 2 этапа:
I этап (2007-2009 годы) - выполнение быстрореализуемых проектов, базирующихся на уже имеющемся научно-техническом заделе;
II этап (2008-2011 годы) - выполнение сложных комплексных проектов по созданию перспективных прорывных технологий, реализуемых в новых поколениях наукоемкой продукции и ориентированных на недопущение технологического отставания от передовых стран или закрепление приоритета отечественных разработок по основным стратегически важным направлениям.
В качестве целевых индикаторов и показателей реализации Программы выбраны:
количество переданных в производство технологий, обеспечивающих конкурентоспособность конечного продукта;
количество патентов и других документов, удостоверяющих новизну технологических решений и закрепляющих права на объекты интеллектуальной собственности, полученные в ходе выполнения Программы, в том числе права Российской Федерации;
количество разработанных технологий, соответствующих мировому уровню или превышающих его.
Целевые индикаторы и показатели реализации Программы (без подпрограммы) представлены в приложении N 1.
Достижение цели Программы осуществляется путем скоординированного выполнения комплекса взаимоувязанных программных мероприятий. В результате общий эффект от реализации Программы существенно превосходит сумму результатов выполнения ее отдельных мероприятий. Каждое программное мероприятие представляет собой комплекс научно-исследовательских, опытно-конструкторских и других работ, требующих значительных ресурсных и временных затрат, и не может быть выполнено посредством разовых или краткосрочных действий. Указанное обстоятельство требует специальной организации процедур реализации программных мероприятий в рамках единой системы программно-целевого планирования, начиная с взаимосогласованного формирования требований к технологиям и заканчивая оптимальным распределением ресурсов.
Эта задача возлагается на органы управления Программой.
III. Перечень программных мероприятийМероприятия Программы предусматривают проведение работ по развитию значительного числа критических технологий, включенных в утвержденный Президентом Российской Федерации 21 мая 2006 г. Перечень критических технологий Российской Федерации. Основу программных мероприятий составляют 8 базовых технологических направлений. Мероприятия Программы по каждому из этих направлений представлены в приложении N 2.
1. Технологии новых материаловВ рамках данного базового технологического направления предусматривается разработка следующих комплексных проектов:
1) технологии металлов и сплавов, сварки и наплавки.
Будут разработаны новые технологии получения конструкционных металлов и сплавов на основе новейших достижений металлургии и металловедения, обладающих высоким уровнем эксплуатационных свойств, которые обеспечат приоритетное развитие базовых отраслей промышленности России (в том числе авиакосмической промышленности, судостроения, топливно-энергетического комплекса) и создание конкурентоспособных образцов новой техники различного назначения.
Новые технологии обеспечат создание:
высокопрочных экономно-легированных хорошо свариваемых сталей для строительных и судостроительных конструкций, железнодорожного транспорта, грузоподъемного оборудования, военной и специальной техники;
хладостойких (в том числе при сверхнизких температурах) низколегированных хорошо свариваемых сталей различного уровня прочности для газо- и нефтедобывающих морских платформ, подводных и наземных трубопроводов высокого давления;
коррозионно-стойких азотсодержащих сталей для химической и целлюлозно-бумажной промышленности, энергетики, медицины, военной и специальной техники;
сталей, плакированных нержавеющей коррозионно-стойкой сталью, а также двухслойных высокопрочных сталей с плакировкой из стали с высоким сопротивлением коррозионно-механическому разрушению для ледостойких морских буровых платформ, судов ледового плавания, военной и специальной техники;
теплоустойчивых, жаростойких, малоактивируемых радиационно стойких сталей и сплавов для энергетического и атомного машиностроения;
сплавов на основе цветных металлов для высокопрочного наземного, воздушного и морского транспорта, обладающих повышенными эксплуатационными качествами;
2) технологии аморфных, квазикристаллических материалов, интерметаллидов, функционально-градиентных покрытий и перспективных функциональных материалов.
Материалы с аморфной, квазикристаллической и интерметаллидной структурой и функционально-градиентные покрытия обеспечат принципиально новый уровень свойств по сравнению с кристаллическими аналогами. Это позволит создавать конкурентоспособные изделия различного назначения, работающие в экстремальных условиях эксплуатации, в том числе:
системы комплексной защиты конструкций, приборов, силовых сетей и персонала от магнитного, электромагнитного и рентгеновского излучения, вибрации, температурных, механических и коррозионных воздействий, воздействия агрессивных сред;
устройства для записи и хранения информации;
элементы систем управления особо точной техникой;
эффективные устройства для накопления и безопасного хранения водорода для транспортных систем и энергетических установок;
системы очистки, дезактивации и опреснения воды;
теплообменные модули энергетических установок с предельными теплофизическими характеристиками;
особо чувствительные сенсорные устройства для измерения физических полей;
изделия медицинской техники;
функциональные материалы и многослойные структуры на основе материалов с фотонной запрещенной зоной, бактериородопсина, синтетических органических и неорганических фотопреобразующих, фотохромных и светоизлучающих материалов для создания перспективной оптоэлектронной техники, оптических носителей информации, хемососенсоров, регуляторов химических реакций различного типа, компонентов интегральной оптики, а также для применения в перспективных информационных системах и в системах защиты ценных бумаг;
3) технологии полимеро-, керамо- и металломатричных композитов и технологии создания на их основе многофункциональных высокопрочных конструкционных материалов.
В рамках реализации этого комплексного проекта предусматривается:
разработка полимеро-, керамо- и металломатричных, а также древесно-полимерных композитов, в том числе "интеллектуальных" полимерных композиционных материалов и "интеллектуальных" конструкций для теплонапряженных элементов двигательных установок, пар трения, обеспечит создание многофункциональных конструкционных материалов, обладающих комплексом свойств, недостижимых при использовании традиционных материалов. Особого эффекта следует ожидать при создании конструкций, работающих в экстремальных условиях и входящих в изделия авиационной и ракетно-космической техники, кораблестроения, гидротурбостроения, насосостроения, двигателестроения, тяжелого и транспортного машиностроения, строительной индустрии;
разработка высокопрочных размерно-стабильных антифрикционных углестеклопластиков и подшипников скольжения из них, металлополимерных композиционных материалов для ледостойких систем, электрохимической катодной защиты от коррозии металлических конструкций, полимерных и металлополимерных полифункциональных слоисто-армированных и объемно-армированных композитов для корпусных и фундаментных конструкций, керамоматричных композитов для гибридных и керамических подшипников качения, работающих при температурах свыше 2000°С, древесно-полимерных композитов в целях создания конкурентоспособной на мировом рынке продукции, функционирующей в экстремальных условиях эксплуатации, в том числе:
немагнитных радиозащищенных корпусов глиссирующих судов и кораблей нового поколения, экранопланов, морских сооружений для шельфовой добычи углеводородного сырья, крупногабаритных надстроек и башенно-мачтовых конструкций сложной формы, рамных фундаментов для виброактивного оборудования;
экологически чистых, размерно-стабильных, высокоскоростных и тяжелонагруженных узлов трения скольжения из антифрикционных углестеклопластиков, работающих при смазке водой и агрессивными жидкостями, рулевых, выдвижных и дэйдвудных устройств судов, надводных и подводных кораблей различных классов и назначения, а также подшипников и торцевых уплотнений вала насосов атомных ледоколов, центробежных насосов поддержания пластового давления нефтегазодобывающих систем, подшипников скольжения направляющих аппаратов гидротурбин, узлов трения скольжения повышенной надежности грузоподъемных машин, шагающих экскаваторов, дробилок щебня и других механизмов, работающих в диапазоне температур от криогенных до 140°С;
ударовиброзащитных полимерных композиционных материалов для защитных экранов, корпусов, обтекателей гидро- и радиолокационных комплексов двойного назначения и блоков положительной плавучести для обитаемых и необитаемых глубоководных аппаратов геолого-разведочного, спасательного и военного назначения;
узлов трения качения и скольжения из керамоматричных композитов, работающих при температурах свыше 2000°С в составе двигателей нового поколения;
ледостойких систем электрохимической защиты от коррозии металлоемких корпусов атомных ледоколов и судов ледового плавания, плавучих и стационарных ледостойких морских буровых платформ для добычи углеводородного сырья на континентальном шельфе арктических морей России и перспективных объектов Военно-Морского Флота различного назначения;
высокопрочных, легких, экологически безопасных, водостойких конструкций на основе древесно-полимерных композиционных материалов для судостроения, железнодорожного транспорта, домостроения;
разработка высокотемпературных керамических композиционных материалов, обеспечивающих работоспособность, ресурс и надежность эксплуатации в условиях окислительных сред и продуктов сгорания топлива элементов теплонагруженных конструкций при температурах эксплуатации на 300-400°С выше существующих;
разработка металлических композиционных материалов для рабочих температур до 1600°С за счет армирования матриц на основе интерметаллидов Ti, Ni, Nb тугоплавкими оксидными волокнами, композиционных материалов на основе оксидалюминиевой керамики с рабочей температурой до 1350°С и диоксидциркониевой керамики с рабочей температурой до 2000°С, работоспособных в окислительных и реакционных средах, повышающих экономическую эффективность изготовления изделий на их основе;
разработка экономичных конструкционных и функциональных изотропных металлических композиционных материалов на алюминиевой, титановой, медной, магниевой матрице, армированной порошками (нанопорошками, нановолокнами) высокопрочных соединений и квазикристаллами с повышенными характеристиками прочности, модуля упругости, твердости и расширенным набором триботехнических свойств, позволяющих повысить экологичность широкого класса двигательных установок, снизить шум и эмиссию двигателей на 25-30 процентов;
разработка экологически безопасных полимерных композиционных материалов на основе жгутовых, тканых угле-, стекло-, органогибридных наполнителей, отвечающих новым техническим требованиям, в том числе в части функций адаптации, самодиагностики и расширения диапазона рабочих температур, и обеспечивающих при изготовлении трехслойных сотовых и монолитных конструкций уменьшение веса конструкции на 30-50 процентов по сравнению с чисто металлическими, снижение трудоемкости производства изделий в 1,5 раза, влагопоглощения на 15-20 процентов, повышение их герметичности, ресурса, надежности и экономической эффективности применения полимерных композиционных материалов в 1,5 - 2 раза.
Ожидаемый объем продаж к 2010-2011 годам функциональных материалов с принципиально новыми свойствами составит 1,1 млрд. рублей в год, композитов и керамических материалов - 500 млн. рублей в год, неметаллических материалов и покрытий - 330 млн. рублей в год.
2. Общемашиностроительные технологииВ рамках данного базового технологического направления предусматривается разработка следующих комплексных проектов:
1) разработка технологий и автоматизированного оборудования для изготовления конструкций из композиционных материалов.
Будут созданы отечественные технологии, оборудование, современное опытное производство изделий из композиционных материалов с объемом производства на первом этапе до 1800 млн. рублей с последующим увеличением до 12600 млн. рублей в год.
Разработка новых технологий позволит создать конкурентоспособное высокоэффективное оборудование для изготовления конструкций из композиционных материалов при снижении веса конструкций авиационной, морской и наземной транспортной техники на 25-30 процентов и снижении стоимости элементов конструкций транспортной техники на 30-40 процентов.
Такое снижение веса и стоимости конструкций позволит повысить экономическую эффективность эксплуатации самолетов гражданской авиации не менее чем на 15-20 процентов.
По мере осуществления экспериментальных отработок новые технологии будут внедряться на серийных образцах космической, авиационной, судостроительной и другой техники;
2) создание типоряда термопластоавтоматов нового поколения для различных отраслей промышленности (атомной, авиационной, космической, оборонной и других).
Будут созданы термопластоавтоматы нового поколения производительностью в 1,5 - 2 раза выше существующих;
3) разработка технологий изготовления дисков и валов из жаропрочных сплавов нового поколения, производимых методом порошковой металлургии.
Реализация разработанных технологий обеспечит снижение трудоемкости изготовления продукции на 40-70 процентов и рост производительности обработки в 3-10 раз;
4) разработка ресурсосберегающих технологий и создание высокоскоростного, интегрированного оборудования для многокоординатной механообработки и оборудования для обработки металлов давлением.
Разработанные технологии позволят создать новое интегрированное оборудование на базе механотронных модулей для высокопроизводительной и высокоскоростной механической обработки деталей сложной формы, обеспечивающее повышение производительности в 3-10 раз, точности обработки в 3-5 раз и высокое качество изготовления деталей.
Указанные технологии будут применяться в производстве высокотехнологичной продукции (авиационной, ракетно-космической, морской техники, оборудования для топливно-энергетического комплекса, нефтедобычи, гидротурбостроения);
5) разработка технологической базы машиностроения на основе применения методов адаптивного прецизионного позиционирования инструмента на базе измерений в нанометровом диапазоне.
Реализация проекта позволит на 1-2 порядка повысить точность обработки деталей на модернизированных станках и создать новое высокоточное обрабатывающее оборудование для прецизионной обработки
-9 деталей с точностью до 10 м, что обеспечит технологическое перевооружение базовых отраслей промышленности Российской Федерации с использованием прецизионного оборудования, повышение конкурентоспособности отечественной станкостроительной продукции, а также создание широкой номенклатуры производимых на этом оборудовании товаров высокого качества;
6) разработка технологий создания автоматизированных систем проектирования, производства и сопровождения наукоемкой техники с использованием электронного документооборота.
Будут разработаны комплекс мероприятий по внедрению новых стандартов, обеспечивающих легитимное использование документации в электронной форме, порядок и механизмы использования нормативной базы при осуществлении практической деятельности, необходимые методические материалы и программное обеспечение, проведена промышленная апробация интегрированной системы;
7) создание технологий и оборудования для лазерной обработки, сварки трением интегральных конструкций, лазерного послойного синтеза деталей из металлических порошков, нанесения многофункциональных покрытий, в том числе специализированного оборудования и технологий сварки с использованием энергии трения интегральных конструкций летательных аппаратов, двигателей из алюминий-литиевых и титановых сплавов для авиации, морской техники, атомных и тепловых электростанций производительностью, превышающей в 5-10 раз современный уровень (ресурс изделий сложной техники будет повышен в 3-5 раз); разработка научно-технической, технологической и конструкторской документации на новые технологии сварки интегральных конструкций летательных аппаратов из высокопрочных алюминиевых сплавов;
8) создание технологии и оборудования для лазерного послойного синтеза деталей из металлических порошков.
Разработка новой технологии обеспечит создание оборудования, позволяющего сократить продолжительность технологической подготовки производства трудоемких изделий сложной формы в 3-5 раз и ускорить внедрение в производство новых изделий в среднем в 2,5 - 3 раза.
3. Базовые технологии энергетикиВ рамках данного базового технологического направления предусматривается разработка следующих комплексных проектов:
1) создание технологий гарантированного электроснабжения для обеспечения безопасности особо ответственных объектов.
Работы по данному направлению обеспечат создание высокозащищенных систем внутреннего электроснабжения мощностью от 200 до 15000 кВт для объектов группы 1 (категория 1а) с использованием новых автономных источников энергии. В процессе выполнения работ будет создана демонстрационная энергетическая система и разработана основополагающая элементная база. Будут также разработаны опытные образцы компактных передвижных электростанций мощностью 100-200 кВт на основе генератора - силового преобразователя с микропроцессорным управлением с высокоскоростными (до 100 тыс. об/мин) газовыми турбинами с электромагнитными подшипниками для гарантированного электропитания потребителей. Реализация этих мероприятий позволит обеспечить как гарантированное энергоснабжение особо ответственных потребителей, так и широкое внедрение малой энергетики при строительстве объектов жилищно-коммунального хозяйства и промышленных объектов, удаленных от энергосетей;
2) создание технологий и оборудования для изготовления фотоэлектрических преобразователей и фотоприемных модулей на основе многослойных наноструктур.
Будут разработаны технологии и оборудование для изготовления фотоэлектрических преобразователей и фотоприемных модулей с коэффициентом полезного действия более 30 процентов и организовано на их основе производство космических солнечных батарей с удельным энергосъемом более 300 Вт/кв. м и увеличенным более чем в 2 раза сроком службы. Для получения "солнечного" электричества в наземных условиях будут разработаны технологии и переданы для промышленного производства наноструктурные фотопреобразователи и модули с коэффициентом полезного действия более 35 процентов при 1000-кратном концентрировании наземного солнечного излучения и в 1,5 - 2 раза меньшей стоимостью по сравнению с существующими преобразователями;
3) разработка ключевых технологий водородной энергетики.
Будут разработаны:
эффективные и безопасные методы и технологии получения, хранения и использования водорода, научные основы и базовые технологии развития атомно-водородной энергетики, опытные установки для производства синтетического топлива в составе атомно-водородных комплексов;
атомно-водородные комплексы и системы получения водорода с использованием возобновляемых источников энергии, включая биотехнологии;
энергосистемы малой и средней мощности (до 200 кВт) на базе электрохимических генераторов для транспортных средств и систем энергоснабжения специальных объектов;
технологии хранения и распределения водорода, обеспечивающие безопасность эксплуатации водородной инфраструктуры на всех этапах (от производства до использования водорода), включая элементную базу средств контроля и измерения;
агрегатная и электротехническая базы, обеспечивающие эффективное и безопасное функционирование всех систем водородной энергетики;
4) разработка базовых технологий силовой электроники - мощных полупроводниковых и вакуумных управляющих элементов и переключателей.
Будут разработаны технологии и освоено производство силовой элементной базы нового поколения для выпуска конкурентоспособных силовых полупроводниковых приборов, в которых остро нуждаются различные отрасли народного хозяйства, в том числе электроэнергетика, транспорт, машиностроение, добывающая промышленность, оборонная техника.
Будет решена задача импортозамещения и будут разработаны базовые технологии производства наиболее востребованных приборов для современной электропреобразовательной техники, отсутствие отечественного производства которых сегодня ставит под угрозу технологическую независимость и безопасность России, включая IGBT-модули, в том числе на ток до 3000 А и напряжение до 6500 В, запираемые тиристоры с жестким выключением (IGCT) на ток до 6000 А, напряжение до 8000 В, "интеллектуальные" силовые приборы и модули с интегрированными элементами драйверов управления, самозащиты и самотестирования на ток до 2000 А, мощные светоуправляемые приборы с оптоволоконной гальванической развязкой цепи управления.
Наряду с силовыми полупроводниковыми приборами будут разработаны технологии вакуумных ключевых приборов, имеющие большую по сравнению с силовыми полупроводниковыми приборами электрическую прочность, быстродействие, стойкость к пробоям и воздействию электромагнитного излучения;
5) разработка технологий и оборудования для создания перспективных высокоэнергетических химических источников тока.
Разработка новых технологий и специального технологического оборудования позволит создать производство конкурентоспособных химических источников тока со следующими характеристиками:
удельная энергия до 200-600 Вт ч/кг (превышение существующего уровня в 2-5 раз);
удельная мощность до 150-1500 Вт/кг (превышение существующего уровня в 3-10 раз);
диапазон рабочих температур от минус 50°С до плюс 65°С;
срок сохраняемости до 20 лет, срок службы до 10-12 лет.
Реализация этого направления позволит:
создать современные высокоэффективные системы автономного электропитания особо ответственных энергопотребителей на промышленных и военных объектах;
увеличить сроки активного существования космических аппаратов;
повысить сроки функционирования переносных средств управления и связи;
увеличить эффективность и время функционирования морских погружных, буксируемых и сбрасываемых средств многоцелевого назначения;
повысить напряжение бортовой сети автомобильной и бронетанковой техники до 42 В, расширить температурный диапазон и увеличить время работы при стартерном режиме без снижения мощности;
исключить применение драгоценных металлов и сократить использование дефицитных материалов (в том числе иностранного производства) в качестве электроактивных и конструкционных компонентов химических источников тока.
4. Технологии перспективных двигательных установокВ рамках данного базового технологического направления предусматривается разработка следующих комплексных проектов:
1) разработка критических технологий многоцелевого назначения и демонстрационных узлов для создания перспективных конкурентоспособных газотурбинных двигателей.
Разработка новых технологий позволит создавать конкурентоспособные газотурбинные двигатели различного назначения с принципиально новым уровнем основных технических и экономических показателей, включая:
повышение топливной экономичности на 20-30 процентов для энергоустановок, на 10-15 процентов для авиадвигателей;
приведение экологических характеристик в соответствие с перспективными международными нормами по шуму и эмиссии вредных выбросов;
увеличение ресурса двигателей в 2 раза;
снижение стоимости разработки, производства и эксплуатации в 1,5 - 2 раза.
Новые технологии также будут внедряться на эксплуатируемых образцах техники при их модернизации;
2) разработка критических технологий и образцов - прототипов высокоскоростных воздушно-реактивных двигателей, разработка технологий проектирования и изготовления теплонапряженных конструкций двигателей, охлаждаемых водородом и (или) углеводородным топливом, камер сгорания с рабочей температурой до 3000 К с использованием новых высокотемпературных материалов и покрытий.
Разработанные технологии позволят приступить к активному использованию области гиперзвуковых скоростей полета летательными аппаратами следующих типов:
трансконтинентальные гиперзвуковые самолеты с глобальной дальностью полета и крейсерской скоростью свыше 5000-8000 км/час;
многоразовые авиационно-космические транспортные системы, выводящие на околоземную орбиту полезную нагрузку массой 5-8 тонн с обеспечением принципиально новой техники вывода на орбиту без космодромов и отчуждаемых территорий с сокращением стоимости в 5-10 раз;
3) разработка технологии создания цилиндров низкого давления нового поколения для турбоустановок атомных и тепловых электростанций.
Работы по указанному направлению обеспечат создание отечественных конкурентоспособных быстроходных турбин большой и малой мощности для стационарных и судовых энергетических установок, а также для энергообъектов специального назначения, расположенных вдали от источников централизованного энергообеспечения.
Потребность российского рынка в газотурбинных двигателях для транспортных и стационарных газотурбинных установок составляет 300-600 млрд. рублей в год.
5. Химические технологии и катализВ рамках данного базового технологического направления предусматривается разработка следующих комплексных проектов:
1) разработка каталитических процессов и технологий производства отечественных наномодифицированных катализаторов нового поколения для более глубокой переработки нефтяного газового сырья в олефины, ароматические углеводороды и мономеры.
Реализация этого проекта позволит обеспечить разработку:
катализаторов глубокой переработки нефти и попутного газа, соответствующих мировому уровню, повышающих эффективность расходования природных ресурсов, обеспечивающих снижение загрязнения атмосферы Земли, содержащих значительно меньшее количество драгоценных металлов и имеющих существенно меньшую цену по сравнению с существующими катализаторами;
проектной документации по созданию или реконструкции типовых установок получения ароматических углеводородов и олефинов;
2) разработка технологий производства нового поколения полимерных композиционных материалов для экстремальных условий эксплуатации.
В рамках этого проекта предусматриваются:
разработка технологий производства термопластических резин специального назначения, обеспечивающих сокращение в 2,5 - 3,5 раза капитальных затрат на смесительное оборудование, в 1,5 - 2 раза затрат электроэнергии и производственных площадей по сравнению с существующими производствами;
разработка промышленных технологий переработки сверхмолекулярного полиэтилена и создание опытных и опытно-промышленных производств материалов и изделий на его основе.
Эти полимерные композиционные материалы необходимы для машиностроения, строительства, нефтеперерабатывающей и нефтехимической отраслей, электропромышленности, автомобилестроения, авиации, медицины, атомной промышленности и других отраслей. Использование полимерных композиционных материалов позволит сократить в 2 - 2,5 раза капитальные затраты на смесительное оборудование, в 1,5 - 2 раза - затраты на электроэнергию по сравнению с существующими технологиями;
3) разработка мембранно-каталитических материалов и технологий нового поколения.
Будут разработаны технологии для производства катализаторов, необходимых для получения высококачественного экологически чистого бензина, фторсодержащей продукции, масложировой продукции, мембранных материалов, используемых в сельском хозяйстве, химической промышленности, в металлургии и металлообработке, в пищевой промышленности и других отраслях.
В целом вновь разрабатываемые и осваиваемые катализаторы и технологии обеспечат к 2012 году производство продукции химического и нефтехимического комплекса России на сумму до 14 млрд. рублей ежегодно.
6. Технологии морской техники, функционирующей в экстремальных природных условияхВ рамках данного базового технологического направления предусматривается осуществление следующих комплексных проектов:
1) разработка технологий создания и прогнозирования перспективной судовой техники и технологий реализации технических средств XXI века, включая технологии использования в судовых энергетических установках водородного топлива.
Учитывая, что к настоящему времени традиционные конструктивные решения в области повышения экологической, конструктивной и навигационной безопасности эксплуатации судов практически исчерпали себя, в рамках этого направления будут разработаны принципиально новые технологические решения по созданию конкурентоспособных высокоэкономичных судов различного назначения, в том числе:
морских транспортных судов (универсальных сухогрузных, контейнеровозов, лесовозов, танкеров) в первую очередь ледового плавания с новыми обводами корпусов, конструкцией и материалом корпуса, обеспечивающими снижение энергозатрат при их эксплуатации и весовых характеристик на 10-15 процентов, повышенную на 20-25 процентов ледопроходимость, с увеличенной в 1,2 - 1,4 раза экономической эффективностью перевозок;
транспортных судов смешанного плавания с новыми типами движительно-рулевых комплексов, обеспечивающих увеличение скорости судов на 0,5 - 0,6 узла и повышение маневренности и управляемости судов;
новых типов автоматизированных промысловых судов (больших, средних и малых) для добычи и переработки рыбы и биологических ресурсов, а также производственно-транспортных рефрижераторов для работы в Мировом океане.
Целевыми показателями разрабатываемых технологий создания судов следующего поколения являются:
снижение затрат в процессе эксплуатации на 15-25 процентов;
повышение коэффициента безопасности эксплуатации судов в 2,5 раза;
снижение издержек производства (сокращение трудоемкости работ и сроков постройки судов в 1,5 - 2 раза);
2) разработка технологий создания сложных транспортно-технологических комплексов для работы в экстремальных условиях Арктики.
Для ускорения освоения природных и биологических ресурсов морей северных и восточных регионов России, Мирового океана и интенсификации использования трасс Северного морского пути будут разработаны новые передовые технологии и технические средства, обеспечивающие создание специальных судов.
Разработанные технологии позволят создать технические сооружения и транспортные средства, которые обеспечат освоение запасов углеводородов и минеральных ресурсов на российском арктическом шельфе, а также создать предпосылки для превращения Северного морского пути в регулярно действующую транспортную магистраль.
Будут разработаны новые технологические решения по повышению ледостойкости, ледопроходимости на 20-25 процентов и безопасности морской техники для работы на замерзающем шельфе, будет создан научно-технический задел для разработки перспективных высокоэффективных конкурентоспособных компонентов транспортных систем;
3) научное обеспечение разработок перспективных высокоэффективных конкурентоспособных компонентов транспортных систем.
Будут разработаны технологии, направленные на снижение сопротивления движению судов и создание высокоэффективных движителей, что должно обеспечить экономию в расходах на топливо до 20 процентов, конструктивную безопасность и снижение уровня аварийности на флоте за счет резкого увеличения ресурса сварных несущих конструкций морской техники, создание перспективных высокоэффективных конкурентоспособных компонентов транспортных систем;
4) разработка промышленных технологий для обеспечения конкурентоспособности производства компонентов систем водного транспорта.
Предусматривается разработка технологий для технического перевооружения и развития производственных мощностей, выпускающих такие технические средства транспортных систем, как транспортные и добывающие суда, плавсооружения, а также комплектующие изделия к ним (судовые энергоустановки, механизмы, устройства, движители, арматура, оборудование и приборы), в том числе на основе малоотходных или безотходных производств.
Разработанные промышленные технологии и оборудование позволят в 1,5 - 2 раза сократить продолжительность создания компонентов систем водного транспорта, обеспечив конкурентоспособность отечественных производственных предприятий на мировом рынке судостроительной продукции;
5) разработка технологий, обеспечивающих навигационную и экологическую безопасность вновь создаваемых конкурентоспособных транспортных средств.
Указанные технологии направлены на:
совершенствование ранее созданной номенклатуры средств автоматизации с целью поддержания объектов транспортных систем в состоянии, удовлетворяющем требованиям национальных регистров, доведения техники до уровня лучших зарубежных образцов и обеспечения возможности замещения импорта;
создание новых навигационных комплексов с использованием систем спутниковой связи по направлениям, связанным с аппаратурной интеграцией, созданием развитой системы обеспечения безопасности движения, выполнением требований эргономики для снижения роли человеческого фактора в причинах аварий и катастроф, внедрением экспертной системы "Помощник экипажа в опасных ситуациях" и новых технологий эксплуатации;
6) разработка и развитие технологий моделирования сложных транспортных технических систем в интересах внешнего проектирования и оценки тактико-технико-экономической эффективности транспортных систем (комплексный проект).
Будут разработаны новые технологии моделирования (комбинированного и операционно-динамического моделирования), что позволит повысить быстродействие вычислений при сохранении необходимой точности расчетов, обеспечить реализацию современных методов проектирования сложных транспортных систем и существенно сократить сроки их разработки.
Реализация базовых технологий направления приведет к снижению энергозатрат на эксплуатацию северного флота на 20-25 процентов, увеличению экономической эффективности перевозок в 1,2 - 1,4 раза, увеличению безопасности эксплуатации в 2,5 раза.
Объем реализованной продукции к 2012-2015 годам составит около 140 млрд. рублей.
7. Технологии обеспечения безопасности жизнедеятельности, диагностики и защиты человека от опасных заболеванийВ рамках данного базового технологического направления предусматривается разработка следующих комплексных проектов:
1) разработка технологий генной и клеточной инженерии для создания средств диагностики, профилактики и защиты человека от опасных заболеваний и биотерроризма. Разработка подходов персонализированной медицины с использованием достижений современной молекулярной медицины (фармакогеномика, протеомика, биоинформатика).
Будут созданы эффективные технологии получения современных лекарственных средств для лечения социально значимых заболеваний и медицины катастроф, включая:
цитокины и их антагонисты (интерфероны, интерлейкины и их рецепторы) - средства первого выбора противоинфекционной защиты и коррекции иммунитета организма для достижения адекватного ответа на патогены (будут разработаны протоколы для индивидуального подбора цитокинов и их индукторов, что обеспечит переход к персонализированной медицине);
терапевтические антитела для лечения опухолевых и аутоиммунных заболеваний, в том числе антидоты к наркотикам и отравляющим веществам;
генно-инженерные ферменты и препараты на их основе;
ростовые факторы и их ингибиторы, в том числе факторы роста сосудов при сердечно-сосудистых заболеваниях и их блокирования при опухолевых процессах;
гормоны, в том числе новые аналоги инсулина быстрого и пролонгированного действия, для лечения заболеваний эндокринной системы;
генно-инженерные факторы и компоненты крови, крайне необходимые для медицины катастроф и стихийных бедствий;
2) разработка биотехнологий получения принципиально новых медицинских препаратов на основе низкомолекулярных биорегуляторов для профилактики и лечения вирусных и бактериальных инфекций человека. Создание и развитие биотехнологической базы синтеза фармпрепаратов на основе белков, пептидов, нуклеозидов.
Будут созданы принципиально новые технологии и средства, основанные на современных достижениях молекулярной биологии, комбинаторной химии, предназначенные для предупреждения и терапии возвращающихся и возникающих инфекционных заболеваний (СПИД, гепатит, туберкулез, грипп, включая птичий), а также потенциальных агентов биотерроризма (возбудители сибирской язвы, ботулизма и других). Это позволит впервые организовать в России современный и мобильный технологический консорциум, включающий все стадии процесса создания эффективных средств профилактики и защиты человека от опасных инфекций, отвечающий международным тенденциям организации противовирусной и антибактериальной защиты на государственном уровне;
3) разработка технологий обнаружения и нейтрализации особо опасных инфекций и патогенных биотоксинов в живых организмах, продуктах питания и окружающей среде.
современные технологии мониторинга опасных инфекций, включая чуму, сибирскую язву, сальмонеллез и другие, позволяющие осуществить их быстрое обнаружение и идентификацию;
новые технологии обнаружения природных биотоксинов, в том числе ботулинических, стафилококковых, столбнячного, дифтерийного, сибиреязвенного, холерного, рицина, микотоксинов, позволяющие проводить одновременный анализ более чем 10 токсинов;
оригинальные диагностические наборы для обнаружения и идентификации карантинных микроорганизмов;
средства нейтрализации токсинов в организме человека на основе человеческих антител (сибиреязвенного токсина, ботулинических нейротоксинов и других).
В результате будет создана технологическая платформа производства аналитических и терапевтических средств нового поколения против опасных инфекций и природных биотоксинов, попадающих в живые организмы в результате естественного инфицирования, террористических актов, техногенных и природных катастроф;
4) разработка технологий и организация производства современного оборудования для уничтожения опасных химических веществ, бактериальных и вирусных патогенов, находящихся в воздухе закрытых помещений.
Будут разработаны стационарные, мобильные, а также встраиваемые в вентиляционные каналы современные системы воздухоочистки на основе технологий фотокатализа для практического использования в закрытых специальных помещениях (клиниках, диспансерах, хирургических блоках, других медучреждениях) и на предприятиях химической, микробиологической промышленности для постоянной очистки воздуха, а также для использования в экстремальных ситуациях;
5) базовые технологии создания перспективных материалов, сорбентов, универсальных поглотителей, катализаторов для систем жизнеобеспечения, средств индивидуальной защиты органов дыхания фильтрующего и изолирующего типов, кожи человека, средств коллективной защиты, систем водоочистки и водоподготовки, систем промочистки.
Реализация мероприятий позволит:
устранить отставание от мирового уровня в области средств индивидуальной и коллективной защиты фильтрующего и изолирующего типов;
обеспечить возможность разработки и серийного производства средств защиты человека, конкурентоспособных на мировом рынке и имеющих опережающий уровень характеристик по сравнению с зарубежными аналогами (универсальность фильтрующе-поглощающих систем, снижение массогабаритных характеристик в 1,2 - 1,8 раза, снижение тепловых нагрузок на человека в средствах индивидуальной защиты на 50 процентов, увеличение времени безопасного пребывания в зоне заражения в 2-5 раз);
решить вопросы импортозамещения по средствам водоочистки и водоподготовки, исключить применение хлора и озона;
6) базовые технологии комплексного контроля экологического состояния окружающей среды на основе качественно новых принципов реализации радиометрического метода дистанционного контроля и метода молекулярных ядер конденсации.
Будут созданы:
технологии неразрушающего контроля средств индивидуальной и коллективной защиты человека на основе метода молекулярных ядер конденсации;
многоцелевые переносные автоматические приборы для осуществления неразрушающего контроля шихтовой части средств защиты фильтрующего типа;
многоуровневые системы дистанционного контроля состояния окружающей среды.
Разработанные технологии позволят:
снизить стоимость системы контроля и расширить область ее применения (контроль фильтро-вентиляционных установок метрополитена, ультрамалых течей, обнаружение скрытых закладок взрывчатых веществ);
повысить в 5-10 раз оперативность обнаружения техногенных эксцессов, достоверность информации, точность координатной привязки и оконтуривания зоны чрезвычайных происшествий;
обеспечить снижение затрат на 40-50 процентов при формировании единой государственной системы экологического мониторинга;
7) технологии диагностики и профилактики состояния здоровья человека.
Реализация программных мероприятий этого направления позволит:
повысить качество диагностики различных патологических изменений организма человека;
обеспечить оперативный мониторинг течения различных заболеваний в процессе лечения и диспансерного наблюдения;
формировать наиболее эффективные комплексные индивидуализированные программы лечения различных заболеваний;
объективно оценивать эффективность новых средств профилактики и лечения различных заболеваний, действие экологических (в том числе производственных), физических и химических факторов на организм человека с учетом индивидуальной чувствительности к ним, устанавливать специфику действия на анатомические и функциональные системы;
создать принципиально новую технологию лечения человека с помощью физических факторов (световая, ультразвуковая, лазерная и другие технологии), что позволит значительно сократить применение химических лекарственных средств.
8. Системно-аналитические исследования проблемы развития базовых технологийРаботы по этому направлению предусматривают:
выявление мировых тенденций развития базовых технологий, обоснование приоритетов и разработку рекомендаций по реализации технологических проектов, обеспечивающих выполнение мероприятий Программы;
разработку информационных технологий для управления реализацией Программы;
разработку предложений по совершенствованию механизмов и нормативного правового обеспечения внедрения в промышленное производство базовых технологий, в том числе в сфере охраны и защиты прав Российской Федерации на разработанные технологии от несанкционированного использования;
исследование проблем развития базовых критических технологий;
проведение сравнительного анализа уровня развития отечественных технологий по отношению к мировому уровню.
IV. Обоснование ресурсного обеспечения ПрограммыРасходы на реализацию Программы с учетом подпрограммы составляют 99458 млн. рублей, в том числе:
за счет средств федерального бюджета - 49549 млн. рублей, из них на научно-исследовательские и опытно-конструкторские работы - 35929 млн. рублей и на капитальные вложения - 13620 млн. рублей;
за счет средств внебюджетных источников - 49909 млн. рублей.
Расходы на реализацию Программы без учета подпрограммы составляют 60998 млн. рублей, в том числе:
за счет средств федерального бюджета - 26349 млн. рублей, из них на научно-исследовательские и опытно-конструкторские работы - 20049 млн. рублей и на капитальные вложения - 6300 млн. рублей;
за счет средств внебюджетных источников - 34649 млн. рублей.
В Программе предусмотрено смешанное (бюджетное и внебюджетное) финансирование таких программных мероприятий, как разработка технологий и создание экспериментально-стендовой и опытно-производственной баз.
Источниками внебюджетных средств являются собственные средства организаций - исполнителей работ и привлеченные средства (кредиты банков, заемные средства других организаций, средства потенциальных потребителей технологий).
На этапах опытно-промышленного освоения технологий и создания соответствующих производств, требующих капитальных вложений, внебюджетные средства (собственные финансовые средства организаций - разработчиков технологий, в том числе амортизационного фонда, а также средства бизнес-структур, заинтересованных в коммерциализации технологий) используются для разработки проектно-сметной документации, проведения строительно-монтажных работ, модернизации инфраструктуры опытных производств и стендов.
Государственные капитальные вложения направляются на модернизацию и совершенствование экспериментально-стендового и испытательного оборудования, а также на реконструкцию и дооснащение опытного производства, необходимого для создания и освоения новых технологий. Это позволит выполнить на современном уровне предусмотренные Программой научно-исследовательские и опытно-конструкторские работы по созданию новых технологий и обеспечить возможность внедрения результатов этих работ в производство.
Финансирование промышленного освоения новых технологий будет осуществляться с привлечением дополнительных внебюджетных источников в соответствии с разработанными исполнителями работ и согласованными с потенциальными потребителями технологий программами (планами) внедрения этих технологий в производство с оценкой необходимых затрат и источников их покрытия.
Объемы финансирования мероприятий Программы приведены в приложении N 3, объемы финансирования Программы и подпрограммы за счет средств федерального бюджета и внебюджетных источников - в приложении N 4, распределение объемов финансирования за счет средств федерального бюджета по государственным заказчикам Программы - в приложении N 5. Замещение внебюджетных средств средствами федерального бюджета не допускается.
V. Механизм реализации Программы, включающий в себя управление Программой и взаимодействие государственных заказчиковРеализация Программы осуществляется на основе государственных контрактов (договоров), предусматривающих разработку и поставку продукции для федеральных государственных нужд, заключаемых с исполнителями программных мероприятий по результатам проведения открытого конкурса.
Государственным заказчиком - координатором Программы и подпрограммы является Министерство промышленности и энергетики Российской Федерации, а государственными заказчиками Программы и подпрограммы - Федеральное агентство по промышленности, Федеральное агентство по атомной энергии, Федеральное агентство по науке и инновациям, Федеральное агентство по образованию, Федеральное космическое агентство, Российская академия наук и Сибирское отделение Российской академии наук.
Государственные заказчики Программы и подпрограммы проводят открытые конкурсы по соответствующим базовым технологическим направлениям и по их результатам заключают государственные контракты (договоры), предусматривающие выполнение научно-исследовательских и опытно-конструкторских работ в целях реализации государственной политики в области технологического развития.
Государственные заказчики Программы и подпрограммы обеспечивают реализацию инвестиционных проектов Программы в соответствии с их полномочиями.
Руководителем Программы является Министр промышленности и энергетики Российской Федерации, заместителем руководителя Программы - руководитель Федерального агентства по промышленности. Руководитель Программы несет персональную ответственность за ее реализацию, конечные результаты, целевое и эффективное использование выделяемых на выполнение Программы финансовых средств, определяет формы и методы управления реализацией Программы.
Ответственность организаций - исполнителей программных мероприятий (проектов) предусматривается в соответствии с законодательством Российской Федерации и положениями государственного контракта (договора).
Министерство промышленности и энергетики Российской Федерации, выполняя функции государственного заказчика - координатора Программы и подпрограммы:
осуществляет контроль за деятельностью государственных заказчиков Программы и подпрограммы;
направляет в Министерство экономического развития и торговли Российской Федерации статистическую, справочную и аналитическую информацию о ходе реализации Программы;
направляет в Министерство финансов Российской Федерации и Министерство экономического развития и торговли Российской Федерации сведения о заключенных контрактах (договорах), предусматривающих финансирование работ, в том числе работ, связанных с закупкой и поставкой продукции для федеральных нужд, а в Министерство образования и науки Российской Федерации - сведения о проектах, предусматривающих научно-исследовательские и опытно-конструкторские работы гражданского назначения;
представляет ежегодно, до 1 февраля, в Министерство экономического развития и торговли Российской Федерации и Министерство финансов Российской Федерации, а по проектам, предусматривающим научно-исследовательские и опытно-конструкторские работы гражданского назначения, - в Министерство образования и науки Российской Федерации по установленной форме доклад о ходе работ по реализации Программы, достигнутых результатах и эффективности использования финансовых средств;
подготавливает ежегодно предложения по уточнению перечня программных мероприятий на очередной финансовый год, а также уточняет с учетом предложений Федерального агентства по промышленности и других государственных заказчиков Программы и подпрограммы механизм реализации Программы, целевые индикаторы и затраты на осуществление программных мероприятий;
организует экспертные проверки хода реализации отдельных мероприятий Программы;
вносит при необходимости в Министерство экономического развития и торговли Российской Федерации и Министерство финансов Российской Федерации предложения о корректировке, продлении срока реализации Программы либо о прекращении ее выполнения;
подготавливает и до 1 марта 2012 г. представляет в установленном порядке в Правительство Российской Федерации, Министерство экономического развития и торговли Российской Федерации, Министерство финансов Российской Федерации доклад о выполнении Программы, эффективности использования финансовых средств за весь период ее реализации.
Система управления реализацией Программы предусматривает координацию мероприятий, предусмотренных Программой, с мероприятиями таких федеральных целевых программ, как "Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2007-2012 годы", "Развитие гражданской авиационной техники России на 2002-2010 годы и на период до 2015 года", "Развитие оборонно-промышленного комплекса Российской Федерации на 2007-2010 годы и на период до 2015 года". Основные задачи координации мероприятий - исключение дублирования и максимально эффективное использование достижений в сфере разработки технологий.
Координация осуществляется межведомственными рабочими группами, создаваемыми совместно государственными заказчиками соответствующих программ.
Механизм управления реализацией Программы определяется положением об управлении реализацией Программы, которое разрабатывается Федеральным агентством по промышленности и утверждается руководителем Программы. Положение устанавливает также состав и функции экспертного совета по координации и научному сопровождению Программы. В состав экспертного совета входят ведущие ученые и специалисты страны в области технологического развития, представители государственных заказчиков Программы и подпрограммы.
VI. Оценка социально-экономической и экологической эффективности ПрограммыИсходные данные для расчета социально-экономической эффективности Программы приняты в соответствии с данными, приведенными в приложении N 2 к Программе.
Социально-экономическая эффективность реализации Программы характеризуется следующими показателями.
Показатели коммерческой эффективности:
чистая прибыль предприятий - 47207 млн. рублей;
чистый дисконтированный доход - 30252,6 млн. рублей;
индекс доходности (рентабельность) инвестиций по чистому доходу предприятий - 1,71;
срок окупаемости (период возврата) инвестиций за счет всех источников финансирования по чистому доходу предприятий - 3 года;
внутренняя норма доходности инвестиций (при норме дисконтирования, принятой для расчета 0,15) - 1,73.
Показатели бюджетной эффективности:
налоги, поступающие в бюджет, - 70848,7 млн. рублей;
бюджетный эффект - 38388,1 млн. рублей;
срок окупаемости (период возврата) бюджетных средств по налоговым поступлениям - 1,5 года;
индекс доходности (рентабельность) бюджетных средств по налоговым поступлениям - 2,18;
удельный вес средств федерального бюджета (степень участия государства) в общем объеме финансирования - 0,766.
Основные показатели социально-экономической эффективности реализации Программы приведены в приложении N 6.
При определении коммерческой и бюджетной эффективности Программы по методике оценки социально-экономической эффективности Программы, приведенной в приложении N 7, были приняты следующие условия:
расчеты произведены с учетом фактора времени путем приведения (дисконтирования) будущих результатов к показателям расчетного года при норме дисконтирования 15 процентов;
величина всех налогов и отчислений, поступающих в бюджет и внебюджетные фонды, определена в соответствии с Налоговым кодексом Российской Федерации;
расчеты всех экономических показателей произведены в действующих прогнозных ценах каждого года расчетного периода (2007-2011 годы) с учетом индексов-дефляторов, установленных Министерством экономического развития и торговли Российской Федерации до 2009 года дифференцированно для промышленной продукции и капитальных затрат.
Реализация Программы будет определять технологические возможности страны на длительную перспективу и создаст технологическую основу для повышения качества жизни, экономического роста и равноправного участия России в мировых рынках высокотехнологичной наукоемкой продукции.
Выполнение Программы позволит:
создать промышленно-технологическую основу для производства конкурентоспособной наукоемкой продукции нового поколения (авиационной и морской техники, автомобильного транспорта, машиностроительного и энергетического оборудования, информационно-управляющих систем), электронной компонентной базы, специальных материалов и другой высокотехнологичной продукции;
сформировать предпосылки для повышения темпов экономического роста за счет увеличения в структуре экономики доли продукции с высоким уровнем добавленной стоимости;
обеспечить сохранение и создание новых рабочих мест на предприятиях высокотехнологичных отраслей промышленности;
сократить общее отставание России от передовых стран, сохраняя и развивая достигнутый приоритет по ряду важных направлений, расширить возможности для равноправного международного сотрудничества в сфере высоких технологий;
создать эффективные средства защиты населения от опасных быстрораспространяющихся инфекций, а также сформировать основу развития и совершенствования систем защиты предприятий, населения и территорий России от поражения токсическими веществами при возможных террористических актах, техногенных и природных авариях и катастрофах;
обеспечить технологические возможности для улучшения экологической обстановки за счет применения высокоэффективных средств контроля и нейтрализации вредных выбросов в окружающую среду.
ПриложенияПРИЛОЖЕНИЕ N 1
к федеральной целевой программе
"Национальная технологическая
база" на 2007-2011 годы
ПРИЛОЖЕНИЕ N 2
к федеральной целевой программе
"Национальная технологическая база"
на 2007-2011 годы
(млн. рублей, в ценах соответствующих лет)
(млн. рублей, в ценах соответствующих лет)
(млн. рублей, в ценах соответствующих лет)
ПРИЛОЖЕНИЕ N 4
к федеральной целевой программе
"Национальная технологическая база"
на 2007-2011 годы
(млн. рублей, в ценах соответствующих лет)
ПРИЛОЖЕНИЕ N 5
к федеральной целевой программе
"Национальная технологическая база"
на 2007-2011 годы
(млн. рублей, в ценах соответствующих лет)
ПРИЛОЖЕНИЕ N 6
к федеральной целевой программе
"Национальная технологическая база"
на 2007-2011 годы
(млн. рублей)
ПРИЛОЖЕНИЕ N 7
к федеральной целевой программе
"Национальная технологическая база"
на 2007-2011 годы
Чистый дисконтированный доход является одним из основных показателей эффективности и характеризует интегральный эффект от реализации Программы. Чистый дисконтированный доход определяется как сальдо суммарного денежного потока от операционной и инвестиционной деятельности предприятий с учетом дисконтирования за расчетный период по формуле:
фи_m - сальдо суммарного денежного потока от инвестиционной и операционной деятельности на m-м шаге расчетного периода;
m - порядковый номер шага расчета (от 1 до М);
альфа_m - коэффициент дисконтирования на m-м шаге расчетного периода.
Чистый дисконтированный доход характеризуется превышением суммарных денежных притоков от инвестиционной и операционной деятельности предприятий над суммарными денежными оттоками за расчетный период с учетом дисконтирования.
Эффективность Программы оценивается в течение расчетного периода, от начала реализации Программы до ее завершения.
За начальный год расчетного периода принимается 2007 год - 1-й год осуществления затрат, за последний год расчетного периода - 2011 год - год завершения реализации Программы.
За расчетный год принимается фиксированный момент времени - начальный год расчетного периода или год проведения расчета. В данном случае за расчетный год принят год проведения расчета - 2006 год.
Расчетный период (2007-2011 годы) измеряется количеством шагов расчета.
За шаг расчета принимается минимальный интервал времени, принятый разработчиком (год, полугодие, квартал, месяц). Номер шага обозначается числами - 1, 2, 3 и т. д. За начальный шаг принимается 1-й шаг. В данном случае за шаг принят 1 год.
Соизмерение разновременных затрат и результатов (учет фактора времени) производится путем их приведения (дисконтирования) к расчетному шагу.
Приведение размера будущих денежных ресурсов (инвестиций, производственных издержек, прибыли и т. д.) к показателям расчетного года расчетного периода производится путем умножения затрат и результатов на коэффициент дисконтирования, величина которого (альфа ) определяется по классической формуле сложных m процентов:
Е - годовая норма дисконтирования;
m - порядковый номер шага расчетного периода от 1 до m-го шага, а именно:
1 - базовый (начальный) шаг (год);
2 - 1-й шаг, следующий за базовым шагом;
3 - 2-й шаг, следующий за 1-м шагом и т. д.
Под годовой нормой дисконтирования понимается минимально допустимая для инвестора величина дохода в расчете на единицу капитала, вложенного в реализацию Программы с учетом уровня инфляции.
При отсутствии утвержденных норм дисконтирования и обоснованных требований инвесторов за норму дисконтирования рекомендуется принимать процентную ставку за банковский кредит, то есть ставку рефинансирования Центрального банка Российской Федерации, действующую на момент проведения расчета (13 процентов) с учетом фактора риска в размере 2 процентов, то есть для настоящего расчета норма дисконтирования принята в размере 15 процентов.
В свою очередь, сальдо суммарного денежного потока от инвестиционной и операционной деятельности на m-м шаге расчетного периода определяется по формуле:
фи_m(и) - сальдо суммарного денежного потока от инвестиционной деятельности на m-м шаге расчетного периода;
фи_m(o) - сальдо суммарного денежного потока от операционной деятельности на m-м шаге расчетного периода.
Сальдо суммарного денежного потока от инвестиционной деятельности на m-м шаге расчетного периода определяется как разность между затратами на реализацию Программы, осуществляемыми за счет использования всех источников финансирования (отток), и затратами на реализацию активов (приток), которые в данном случае равны 0.
Сальдо суммарного денежного потока от операционной деятельности на m-м шаге расчетного периода определяется как разность между объемом продаж (приток) и суммой издержек производства реализуемой продукции (без амортизационных отчислений), налога на имущество и налога на прибыль (отток). В итоге образуется сумма чистой прибыли и амортизационных отчислений, остающаяся у предприятий (чистый доход предприятий).
Внутренняя норма доходности представляет собой норму дисконтирования, при которой величина чистого дисконтированного дохода равна 0.
Внутренняя норма доходности характеризует предельную (граничную) норму дисконтирования, отделяющую эффективные варианты реализации Программы от неэффективных, а также степень устойчивости Программы. Внутренняя норма доходности сравнивается с нормой дисконтирования, принятой для расчета. Чем больше внутренняя норма доходности, тем эффективнее и устойчивее Программа. Показатель внутренней нормы доходности определяется исходя из условия, что чистый дисконтированный доход равен 0, и решение уравнения относительно внутренней нормы доходности осуществляется по формуле:
фи_m - сальдо суммарного денежного потока от инвестиционной и операционной деятельности на m-м шаге расчетного периода;
m - порядковый номер шага расчета (от 1 до М).
Для определения показателя внутренней нормы доходности используется финансовая функция "ВНДОХ", встроенная в "Excel".
Срок окупаемости инвестиций или период возврата - это период от начального шага, в течение которого чистый дисконтированный доход становится неотрицательным, или период, в конце которого суммарная величина дисконтированных инвестиций полностью возмещается суммарными дисконтированными доходами (суммой чистой прибыли и амортизационных отчислений) вследствие реализации Программы.
За начальный шаг принимается начало инвестиционной деятельности в календарном исчислении, то есть 2007 год - начало 1-го шага расчетного периода.
Срок окупаемости определяется по данным расчета сальдо суммарного денежного потока от инвестиционной и операционной деятельности с учетом дисконтирования.
Часть срока окупаемости определяется количеством шагов, имеющих отрицательное значение сальдо. Дробная часть периода возврата, прибавляемая к указанной части, определяется методом интерполяции.
Программа может быть принята к рассмотрению при условии, если срок окупаемости меньше расчетного периода, принятого в технико-экономическом обосновании Программы равным 5 годам (2007-2011 годы).
Индекс доходности инвестиций определяется как отношение дисконтированной величины сальдо от операционной деятельности, то есть от чистого дохода предприятий (чистая прибыль плюс амортизационные отчисления) за расчетный период, к дисконтированной величине затрат, осуществляемых за счет использования всех источников финансирования за тот же период.
Если индекс доходности инвестиций больше 1, реализация Программы будет эффективной, если меньше 1 - неэффективной. При чистом дисконтированном доходе, равном 0, индекс доходности равен 1.
Показатели бюджетной эффективности
Бюджетная эффективность характеризуется такими основными показателями, как бюджетный эффект, доля бюджетных ассигнований (коэффициент участия государства), срок окупаемости и индекс доходности средств федерального бюджета.
Бюджетный эффект представляет собой превышение доходной части бюджета над его расходной частью в результате реализации Программы.
Бюджетный эффект за расчетный период определяется по формуле:
дельта_m - превышение доходной части бюджета над его расходной частью на m-м шаге расчетного периода;
альфа_m - коэффициент дисконтирования на m-м шаге расчетного периода;
m - порядковый номер шага расчета (от 1 до М).
В состав расходов бюджета включаются средства, выделяемые для прямого бюджетного финансирования Программы.
В состав доходов бюджета и приравненных к ним поступлений во внебюджетные фонды включаются:
налог на имущество в размере 2 процентов среднегодовой стоимости основных промышленно-производственных фондов по остаточной стоимости;
налог на прибыль в размере 24 процентов налогооблагаемой прибыли (прибыли от реализации за вычетом налога на имущество);
налог на добавленную стоимость в размере 18 процентов объема реализованной продукции;
подоходный налог в размере 13 процентов фонда оплаты труда;
единый социальный налог в размере 26 процентов фонда оплаты труда.
Доходная часть бюджета корректируется в зависимости от коэффициента участия государства в Программе.
Коэффициент участия государства является важным показателем бюджетной эффективности и определяется как отношение дисконтированной величины средств федерального бюджета, предусмотренных на реализацию Программы за расчетный период, к дисконтированной величине суммарных затрат, осуществляемых за счет использования из всех источников финансирования за тот же период. Показатель характеризует степень финансового участия государства в реализации Программы и учитывается при расчете бюджетного эффекта и других показателей бюджетной эффективности. Предпочтение следует отдавать вариантам программ, имеющим наименьший показатель коэффициента участия государства, так как для реализации таких программ требуется меньше бюджетных средств.
Срок окупаемости или период возврата средств федерального бюджета - это период от начального шага, в течение которого бюджетный эффект становится неотрицательным, или период, в конце которого суммарная величина дисконтированных средств федерального бюджета полностью возмещается суммарными дисконтированными доходами бюджета (налоговыми поступлениями) вследствие реализации Программы.
Индекс доходности средств федерального бюджета, предусмотренных на реализацию Программы, определяется как отношение дисконтированной величины доходов бюджета, полученных от реализации Программы за расчетный период, к дисконтированной величине расходов бюджета за тот же период.
УТВЕРЖДЕНА
постановлением Правительства
Российской Федерации
от 29 января 2007 г. N 54
Наименование подпрограммы | - подпрограмма "Развитие электронной компонентной базы" на 2007-2011 годы федеральной целевой программы "Национальная технологическая база" на 2007-2011 годы |
Дата принятия решения о разработке подпрограммы | - распоряжение Правительства Российской Федерации от 18 декабря 2006 г. N 1761-р |
Государственные заказчики подпрограммы | - Федеральное агентство по промышленности, Федеральное агентство по атомной энергии, Федеральное космическое агентство, Федеральное агентство по науке и инновациям, Федеральное агентство по образованию |
Государственный заказчик - координатор подпрограммы | - Министерство промышленности и энергетики Российской Федерации |
Основные разработчики подпрограммы | - Министерство промышленности и энергетики Российской Федерации, Министерство обороны Российской Федерации, Федеральное агентство по промышленности, Федеральное агентство по науке и инновациям, Федеральное космическое агентство, Федеральное агентство по образованию |
Цель и задачи подпрограммы | - цель подпрограммы - развитие национального научно-технологического и производственного базиса для разработки и производства конкурентоспособной наукоемкой электронной компонентной базы для решения приоритетных задач социально-экономического развития и обеспечения национальной безопасности России. Задачи подпрограммы: разработка базовых технологий и базовых конструкций электронных компонентов и приборов (сверхвысокочастотная электроника, радиационно стойкая электронная компонентная база, микросистемная техника, микроэлектроника, радиоэлектронные компоненты и приборы, материалы); опережающее развитие систем автоматизированного проектирования сложных электронных компонентов и систем для достижения мирового уровня; техническое перевооружение российской электронной промышленности на основе передовых технологий; создание научно-технического задела по перспективным технологиям и конструкциям электронных компонентов; обеспечение российских разработок радиоэлектронных средств и стратегически значимых систем российской электронной компонентной базой высокого технического уровня; активизация инновационных процессов, освоение новых технологий электронных компонентов |
Важнейшие целевые индикаторы и показатели | - основным целевым индикатором реализации подпрограммы является уровень разработанных и освоенных микроэлектронных технологий по выпуску электронной компонентной базы. Ожидается, что в 2007 году на предприятиях микроэлектроники будет освоен технологический уровень 0,18 мкм, что обеспечит создание производственно-технологической базы для выпуска современной электронной компонентной базы, соответствующей потребностям российских производителей аппаратуры и систем. В 2011 году планируется достижение уровня технологии 0,09 мкм, что существенно сократит отставание российской электроники от мировой. Основным показателем успешной реализации подпрограммы принято увеличение объемов продаж электронной продукции. Ожидается, что в 2011 году значение этого показателя составит около 45 млрд. рублей, темпы роста объемов производства электронной компонентной базы будут сопоставимы с мировыми показателями |
Срок и этапы реализации подпрограммы | - 2007-2011 годы: I этап - 2007-2009 годы; II этап - 2008-2011 годы |
Объемы и источники финансирования подпрограммы | - всего по подпрограмме на 2007-2011 годы - 38460 млн. рублей (в ценах соответствующих лет), в том числе: |
а) за счет средств федерального бюджета - 23200 млн. рублей, из них на научно-исследовательские и опытно-конструкторские работы - 15880 млн. рублей, на капитальные вложения - 7320 млн. рублей; | |
б) за счет средств внебюджетных источников - 15260 млн. рублей. Всего по подпрограмме на 2007 год за счет средств федерального бюджета предусматривается 3800 млн. рублей, из них на научно-исследовательские и опытно-конструкторские работы - 2600 млн. рублей, на капитальные вложения - 1200 млн. рублей | |
Ожидаемые конечные результаты реализации подпрограммы и показатели социально-экономической эффективности | - выполнение подпрограммы в полном объеме позволит: создать современную инфраструктуру разработки и производства перспективной электронной компонентной базы, необходимой для выпуска высокотехнологичной наукоемкой продукции мирового уровня в области важнейших технических систем (воздушный, морской и наземный транспорт, ракетно-космическая техника, машиностроительное, энергетическое оборудование, вычислительная техника, системы управления, навигации, связи и информатики, медицинская техника, образование, экологический контроль), обеспечивающей в целом технологическую безопасность России; расширить возможности для равноправного международного сотрудничества в сфере высоких технологий; решить задачи социально-экономического развития за счет увеличения доли высокотехнологичных продукции и услуг в структуре экономики; сохранить и создать новые рабочие места в организациях высокотехнологичных отраслей промышленности; уменьшить материало- и энергоемкость производства, снизить экологическую нагрузку, улучшить условия труда; сформировать научные и технологические предпосылки для кардинального изменения структуры экспорта в пользу наукоемкой продукции с увеличением ее доли в 2 - 2,5 раза за счет резкого повышения потребительских свойств, конкурентоспособности выпускаемой продукции, закрепления традиционных и освоения новых сегментов мирового рынка; обеспечить налоговые поступления в бюджет от организаций - исполнителей и пользователей результатами подпрограммы в размере 65343,9 млн. рублей, что превысит размер инвестиций и создаст бюджетный эффект в размере 46343,1 млн. рублей; обеспечить индекс доходности (рентабельность) бюджетных ассигнований в размере 1,78, а срок окупаемости бюджетных ассигнований (период возврата) - 1 год, что свидетельствует о высокой эффективности подпрограммы |
Подпрограмма "Развитие электронной компонентной базы" на 2007-2011 годы федеральной целевой программы "Национальная технологическая база" на 2007-2011 годы (далее - подпрограмма) разработана в соответствии с распоряжением Правительства Российской Федерации от 18 декабря 2006 г. N 1761-р.
Подпрограмма разработана с учетом положений Основ политики Российской Федерации в области развития науки и технологий на период до 2010 года и дальнейшую перспективу, утвержденных Президентом Российской Федерации 30 марта 2002 г.
Основной проблемой, на решение которой направлена подпрограмма, является обеспечение создания и производства радиоэлектронных средств и стратегически значимых систем с использованием российской электронной компонентной базы нового технического уровня на основе коренной модернизации производственно-технологической базы электронной промышленности и сокращения технологического разрыва с мировым технологическим уровнем, повышения технико-экономических показателей и расширения объемов производства массовой электронной компонентной базы, опережающего развития вертикально интегрированных систем автоматизированного проектирования электронной компонентной базы и аппаратуры.
Подпрограмма учитывает, что проблемы экономического развития Российской Федерации в ближайшее десятилетие будут определяться способностью государственного обеспечения ресурсами для ускоренного роста высокотехнологичного сектора экономики.
Привлечение инвестиций в экономику с их точной адресацией и учетом взаимодействия связанных с развитием высоких технологий секторов экономики рассматривается Правительством Российской Федерации в качестве важнейшего фактора создания российской конкурентоспособной технологической базы нового производства, формирующей перспективу общего роста экономики Российской Федерации.
Приоритетами государственной инвестиционной политики в этих условиях являются ускоренное инвестиционное развитие секторов "новой экономики", прежде всего становление инновационных и информационных отраслей, формирование нового технологического уровня промышленности и решение на его базе задач социально-экономического развития государства.
Все это позволяет ставить и решать в среднесрочной перспективе задачу предотвращения увеличения технологического разрыва между Российской Федерацией и развитыми государствами, а в долгосрочной перспективе - задачу упрочения позиции России как одного из лидеров мирового развития.
Ускорение социально-экономического развития общества, его информационное обеспечение и повышение интеллектуального уровня, дальнейший рост эффективности труда и комфортности быта, экономия природных и энергетических ресурсов, коренное улучшение технико-экономических и экологических показателей практически во всех отраслях промышленности и топливно-энергетического комплекса, модернизация базы научных исследований, медицины, образования, развитие космических исследований и разработка систем телекоммуникации основаны на широком применении электроники.
Основополагающими факторами расширения производства и использования современной радиоэлектронной аппаратуры и информационно-коммуникационных систем являются динамичный научно-технический и производственный процесс развития электронных технологий и организация массового выпуска необходимых электронных компонентов.
В настоящее время доля электроники в стоимости бытовых, промышленных и оборонных изделий и систем составляет 50-80 процентов. Степень совершенства этих изделий и технико-экономические показатели производства определяются в первую очередь техническим уровнем используемой электронной компонентной базы.
Повышение технических характеристик и функциональной сложности электронной компонентной базы приводит к значительному улучшению технико-экономических показателей и надежности создаваемой радиоэлектронной аппаратуры, снижает число сборочных операций и количество используемых компонентов, уменьшает стоимость продукции при улучшении ее технических характеристик.
Мировой рынок микроэлектронной техники (основной составляющей электронной промышленности) в 2005 году достиг объема 228 млрд. долларов США и имеет устойчивые показатели роста 10-15 процентов в год, что почти в 5 раз превышает мировые общепромышленные показатели.
Электроника используется ведущими мировыми державами как рычаг удержания мирового технического, финансового, политического и военного господства. Развивающиеся страны рассматривают государственную поддержку электронной промышленности как наиболее эффективный способ подъема экономики и вхождения в мировой рынок.
Мировой опыт также показывает, что совершенствование электронной продукции и наращивание объемов ее производства ведутся, главным образом, на основе комплексно-целевых научно-технических программ, инициируемых правительствами развитых и развивающихся стран и финансируемых до 50 процентов из средств государственного бюджета. Ежегодно на программы развития электроники в мире выделяется более 12 млрд. долларов США, а если учесть, что фирмы расходуют до 10 процентов от объемов продаж изделий электроники на научно-исследовательские и опытно-конструкторские работы, то эта сумма вырастает до 30 млрд. долларов США.
Объем капитальных вложений в полупроводниковую отрасль (включая научно-исследовательские и опытно-конструкторские работы) в 2005 году в мире составил 47 млрд. долларов США.
Наряду с прямым финансированием программ правительства заинтересованных в развитии электроники государств оказывают косвенную поддержку новых производств путем предоставления налоговых льгот, льготных кредитов на закупку технологий и специального технологического оборудования, государственных гарантий инвесторам, уменьшения срока амортизации специального технологического оборудования и защиты внутреннего рынка от импорта.
В сложившейся ситуации единственным способом решения проблемы развития электронной компонентной базы в Российской Федерации является программно-целевой метод, обеспечивающий необходимый уровень адресной поддержки развития технологий и новых производств электронной компонентной базы, которая, в свою очередь, призвана обеспечить повышение конкурентоспособности экономики, инвестиционных программ и проектов в секторах с высокой долей участия государства, прежде всего проектов оборонно-промышленного комплекса.
Таким образом, реализация подпрограммы полностью соответствует приоритетам государственной политики по созданию стратегически важных для страны инфраструктурных объектов, от которых зависит устойчивое функционирование всей экономики страны и ее сфер, способствующих инновационно-технологическому прорыву, решение задач социально-экономической политики государства, развитие и безопасное функционирование технически сложных систем и экологическая безопасность.
Подпрограмма разрабатывалась с учетом следующих критериев:
соответствие основным направлениям социально-экономической политики, так как развитие электронной компонентной базы позволит решить вопрос создания основы для развития передовых отраслей промышленного производства, обеспечит укрепление экономики, расширит сферы применения средств телекоммуникаций, информатики, улучшит условия труда и быта населения, будет способствовать повышению его образовательного и интеллектуального уровня, уровня медицинского обслуживания и социального обеспечения, улучшит экологию;
межотраслевой и межведомственный характер проблемы, поскольку электронная компонентная база является основой для разработки и производства радиоэлектронной аппаратуры, систем связи и телекоммуникации, систем управления в промышленности, социальной сфере, торговле и транспорте, связана с технологиями и материалами двойного назначения, дает возможность применения изделий в экстремальных условиях эксплуатации (космическое пространство, земные недра, мониторинг обстановки вблизи источников излучений ядерных объектов, физические эксперименты, стихийные бедствия) и в специальной технике (системы антитеррора и контроля за перемещением наркотиков, системы экологического мониторинга, системы раннего предупреждения и ликвидации последствий техногенных катастроф);
значительный мультипликативный эффект, поскольку совершенствование технологий и конструкций обеспечивает не только повышение функциональных и технических характеристик электронной компонентной базы и создаваемой на ее основе аппаратуры, но и резко снижает затраты на проектирование и выпуск аппаратуры и систем. Это объясняется тем, что этапы проектирования систем, выполняющих сложные функции, переносятся на этап проектирования специализированных больших интегральных схем, а основной объем сборочных операций при выпуске аппаратуры заменяется на процессы интеграции элементов при изготовлении сложнофункциональной электронной компонентной базы, которая выполняет роль блоков и узлов аппаратуры или полностью реализует функции аппаратуры в составе одной сверхбольшой интегральной схемы "система на кристалле" (однокристальный телевизор, однокристальный телефон). При использовании аппаратуры и систем с высокими техническими показателями достигается значительный эффект в части повышения производительности, точности и надежности выполнения функций, энергосбережения, экономии материалов, улучшения условий труда;
количественно определенный результат, который будет определяться по каждому инвестиционному проекту в виде достигнутых мощностей производства, показателей технического качества выпускаемой продукции, социально значимых показателей (количество дополнительных рабочих мест, улучшение условий труда, снижение экологической нагрузки), технико-экономических показателей производства (снижение энергопотребления, повышение процента выхода годных изделий), расширения объема экспортных поставок, а также размера поступлений в бюджет в виде налогов;
увязка расходов с возможностями бюджета в течение всего срока реализации подпрограммы путем финансирования подпрограммы по итогам выполнения плана научно-исследовательских и опытно-конструкторских работ за предыдущий год на основе ежегодного открытого конкурса проектов, который позволяет оптимизировать состав участников подпрограммы и обеспечить максимально возможное выполнение программных мероприятий при заданном объеме финансирования;
преобладание расходов на научно-исследовательские и опытно-конструкторские работы над расходами капитального характера, включая приобретение оборудования, в структуре финансирования подпрограммы (60 процентов расходов на научно-исследовательские и опытно-конструкторские работы, 40 процентов - на капитальные вложения), которое позволит достигнуть максимально возможного практического эффекта от реализации подпрограммы в целом. Каждый инвестиционный проект подпрограммы сопровождается соответствующим мероприятием (комплекс научно-исследовательских и опытно-конструкторских работ по разработке автоматизированных систем проектирования, базовых технологий и базовых конструкций электронной компонентной базы, необходимых материалов);
невозможность решения проблемы межотраслевого, межведомственного характера другими способами и необходимость принятия решений на уровне Правительства Российской Федерации.
Необходимость участия Правительства Российской Федерации обусловлена в первую очередь государственной важностью этой задачи и ее стратегическим значением для подъема производства промышленного комплекса, а также широким кругом использования электронной компонентной базы для решения задач социально-экономического развития страны.
Иностранные инвесторы, пытаясь сохранить сложившееся положение на мировом и российском рынке электронной компонентной базы, не предполагают участвовать в развитии российских электронных предприятий, а внутренние инвесторы реализуют, как правило, краткосрочные проекты и не готовы вкладывать средства в высокотехнологичные длительные проекты.
Современное состояние производства электронной компонентной базы таково, что реализация подпрограммы является последней возможностью восстановления электроники и от полноты государственной поддержки зависит судьба высоких технологий в России.
Важным обстоятельством является то, что в ближайшие годы в Российской Федерации открываются новые рыночные ниши, еще не занятые иностранным производителем, что формирует потребность и создает реальные условия для быстрого развития производства новых видов электронной компонентной базы.
Обеспечение создания и производства средств радиочастотной идентификацииОдним из важнейших направлений применения радиочастотной идентификации является электронный паспорт. Работы в этом направлении активно ведутся в настоящее время и в Российской Федерации. По экспертным оценкам, для обеспечения электронными паспортами населения в количестве около 150 млн. человек потребуется не менее 100 млн. микросхем, затем ежегодно 30-50 млн. микросхем в связи с пополнением состава взрослого населения, необходимостью замены паспортов по семейным и другим обстоятельствам, плановым обновлением паспортов один раз в 5 лет, а также переводом на эту же технологию водительских удостоверений, смарт-карт платежных систем, карт доступа к мобильной связи.
С использованием средств радиочастотной идентификации можно выпускать менее сложные микросхемы, например, электронные метки для товаров и грузов (потребность в них в 2007 году может достигнуть 250-400 млн. штук). Большая потребность в микросхемах возникнет и при формировании инфраструктуры пользователей. По экспертным оценкам, объем данного сегмента рынка микроэлектронных изделий составляет 6-8 млрд. рублей в год.
Принципиально важным является решение об обязательном выборе российского разработчика и изготовителя микросхем для электронного паспорта, что, с одной стороны, придаст новый импульс развитию электронной промышленности, с другой - будет направлено на обеспечение безопасности государства. Проект создания электронного паспорта должен находиться под контролем государства и его следует рассматривать как основной проект-катализатор для подъема электронной промышленности в целом.
Обеспечение создания и производства средств координатно-временного обеспеченияВ настоящее время основными и наиболее точными средствами навигационного обеспечения различных потребителей являются глобальные навигационные спутниковые системы "ГЛОНАСС" (Россия) и GPS (США). В Европе разворачивается навигационная система "Галилео".
Объем российского рынка навигационной аппаратуры составляет около 5 процентов общего мирового рынка, что соответствует около 50 млн. навигационных приборов. Сохранение за российским производителем не менее 50 процентов рынка навигационной аппаратуры соответствует объему выпуска электронной компонентной базы на 1,5 - 1,8 млрд. рублей в год.
Обеспечение создания и производства техники для цифрового телевиденияПравительством Российской Федерации принято решение о внедрении европейской системы цифрового телевизионного вещания, что позволяет рассчитывать на широкое использование российского высокотехнологичного оборудования и исключить "захват" российского рынка телевидения иностранными фирмами, как это произошло при внедрении мобильной радиосвязи.
По оценкам, объем рынка аппаратуры для цифрового телевидения к 2015 году составит около 600 млрд. рублей, при этом уже сегодня не менее 60 процентов аппаратуры может производиться российскими организациями.
Следует учитывать, что дополнительную потребность при этом создает производство приставок к обычным (аналоговым) телевизорам для приема ими цифрового телевизионного сигнала. Учитывая большое количество аналоговых телевизоров, находящихся в пользовании у населения (не менее 80 млн. аппаратов), данный сегмент рынка представляется весьма существенным.
Кроме того, следует учитывать систему платного абонентского телевидения, в которой используются специальные схемы, обеспечивающие возможность платного просмотра. В целом, совокупный объем рынка электронной компонентной базы по данному направлению составит 5-8 млрд. рублей в год.
Обеспечение создания и производства современного медицинского оборудования, в том числе мобильного типаВ настоящее время совокупный объем рынка медицинской техники в России составляет 40-45 млрд. рублей, из них около 30 млрд. рублей - импортные изделия, причем значительную долю импортных изделий составляют изделия с применением современной электронной компонентной базы (более 42 процентов).
Приоритетным направлением развития следует считать разработку и освоение производства автономных миниатюрных электронных медицинских систем, приборов и оборудования, рассчитанных на мобильное использование.
Средняя стоимость изделий медицинской техники мобильного типа с учетом покупательной способности населения страны не должна превышать 50 долларов США. Общий объем рынка оборудования этого типа прогнозируется на уровне 5 млн. единиц в год. Доля электронной компонентной базы в стоимости такого оборудования составляет не менее 80 процентов. Таким образом, общий объем рынка электронной компонентной базы для медицинского оборудования мобильного типа может составить 7,2 млрд. рублей в год.
С учетом высокой стоимости сложного диагностического и терапевтического импортного медицинского оборудования одним из путей снижения его стоимости должно стать производство в России аналогичного оборудования на основе широкого применения отечественной электронной компонентной базы. Доля электронной компонентной базы в общей стоимости только стационарного оборудования доходит до 20 процентов, поэтому можно рассчитывать на сбыт электронной компонентной базы в пределах 1,4 млрд. рублей, исходя из общего объема рынка такого оборудования в размере 7,2 млрд. рублей в год.
В перспективе совокупный объем рынка электронной компонентной базы для медицинского оборудования может достигнуть 8 млрд. рублей в год.
Современные технологии образованияВ области образования необходимо в первую очередь обеспечить равный доступ всех обучающихся к источникам информации современного типа на основе использования мультимедийных систем. В связи с этим необходимо обеспечить устойчивый высокоскоростной доступ к сетевым ресурсам на всей территории страны.
Беспроводной мультимедийный доступ к ресурсам обучения целесообразно развивать путем существенного снижения стоимости персональных мобильных компьютеров с целью максимального приближения их цены к покупательной способности населения Российской Федерации.
Решить эту задачу можно только путем организации массового производства комплектующих для выпуска указанных устройств и оборудования на территории Российской Федерации, причем основным подходом к решению данной задачи должно быть резкое сокращение количества комплектующих в персональных и мобильных вычислительных устройствах за счет применения "систем на кристалле". Кроме того, необходимо организовать на территории России массовое производство дешевых жидкокристаллических и других мониторов (например, на базе дешевой технологии полимерных дисплеев).
Общий объем рынка мультимедийных устройств для системы образования при условии снижения их стоимости до 1 - 1,5 тыс. рублей может достичь 5 млн. единиц в год, то есть 3,6 - 7 млрд. рублей в год. Стоимость электронной компонентной базы в составе таких изделий составляет не менее 70 процентов, поэтому совокупный объем продаж электронной компонентной базы в этом сегменте рынка может составить 2,6 - 5,2 млрд. рублей.
Электроника и доступное жильеВ ближайшей перспективе планируется значительное сокращение расходов на эксплуатацию и энергообеспечение жилья за счет внедрения энергосберегающих технологий. Большое значение при этом имеет широкое внедрение солнечной энергетики, высокоэффективных твердотельных источников света и систем интеллектуального управления объектами в жилых помещениях, оптимизирующих энергопотребление и обеспечивающих постоянный мониторинг всех объектов управления, находящихся в помещении ("интеллектуальный дом").
Необходимо также решить вопросы, связанные с обеспечением коммунальной инфраструктуры строящегося и модернизируемого жилищного фонда, повышением качества и совершенствованием учета объема коммунальных услуг (водоснабжение, электроснабжение, теплоснабжение).
Модернизации с применением электронных технологий должны подвергнуться около 20 млн. единиц жилищного фонда страны за 10 лет. При среднем уровне затрат на модернизацию не менее 1,5 тыс. рублей на типовое электронное устройство общий объем этого сегмента рынка может составить 30 млрд. рублей в год.
Электроника и сельское хозяйствоВ области сельского хозяйства электронные технологии должны использоваться для создания производственной основы модернизации сельскохозяйственного машиностроения (включая транспортную составляющую, технологическое оборудование для животноводства и первичной переработки продукции, новую инженерно-техническую базу отрасли), беспроводных сенсорных сетей на основе интеллектуальных датчиков, контролирующих состояние почвы, растительных культур, режим питания и перемещение скота в животноводстве.
Применение указанных технологий в сельском хозяйстве обеспечит рациональное использование удобрений, снижение падежа скота и птицы, а также своевременное предупреждение о распространении среди животных опасных для человека эпидемий.
Данный сегмент рынка оценивается в объеме около 12-15 млрд. рублей в год.
Другие сегменты рынка электронной компонентной базы (промышленная электроника, энергетическое оборудование, связь, космическая техника, автомобильная электроника, системы безопасности, бытовая техника, торговое оборудование и др.) могут также существенно увеличить загрузку электронных производств.
Таким образом, в России существует реальная, подкрепленная гарантированным рынком государственных закупок, возможность создания современного производства электронной компонентной базы с общим объемом сбыта в размере 90-120 млрд. рублей в год.
Подпрограмма направлена на приоритетное развитие основных базовых электронных технологий, обеспечивающих укрепление научно-производственной базы российской электроники, ускоренное развитие автоматизированных систем проектирования электронной компонентной базы и реализацию основных структурных элементов интегрированной многоуровневой системы разработки сложной радиоэлектронной аппаратуры и стратегически важных систем на базе библиотек стандартных элементов, сложнофункциональных блоков, специализированных больших интегральных схем "система на кристалле", прикладного и системного программного обеспечения.
Срок реализации подпрограммы обусловлен необходимостью ее согласования с основными действующими и разрабатываемыми программами социально-экономического развития, а также с реализацией в рамках одной программы крупных инвестиционных проектов, определяющих выполнение государственных заданий по социально-экономическому развитию. Подпрограмма является обеспечивающей по отношению к федеральной целевой программе "Национальная технологическая база" на 2007-2011 годы.
Подпрограмма подготовлена и будет реализовываться на основе следующих принципов:
комплексность решения наиболее актуальных проблем научно-технического и технологического развития разработки и производства электронной компонентной базы;
сосредоточение основных усилий на развитии критических технологий, разработке и организации выпуска новых серий электронной компонентной базы, имеющих межотраслевое значение для повышения технологического уровня и конкурентоспособности российской продукции;
адресность инвестиций в отношении проектов, реализуемых в рамках подпрограммы, в сочетании с возможностью маневра бюджетными средствами и их концентрацией на приоритетных направлениях для обеспечения наибольшей эффективности реализуемых мероприятий;
обеспечение эффективного управления реализацией подпрограммы и контроля за целевым использованием выделенных средств;
создание условий для продуктивного сотрудничества государства и частного бизнеса, основанных на сочетании экономических интересов и соблюдении взаимных обязательств.
II. Основные цель и задачи подпрограммы, срок и этапы ее реализации, а также целевые индикаторы и показателиЦелью подпрограммы является развитие национального научно-технологического и производственного базиса по разработке и выпуску конкурентоспособной наукоемкой электронной компонентной базы для решения приоритетных задач социально-экономического развития и обеспечения национальной безопасности Российской Федерации.
Задачи подпрограммы:
разработка базовых технологий и базовых конструкций электронных компонентов и приборов (сверхвысокочастотная электроника, радиационно стойкая электронная компонентная база, микросистемная техника, микроэлектроника, силовая электроника, пассивные элементы, электронные материалы);
опережающее развитие систем автоматизированного проектирования сложных электронных компонентов и систем для достижения мирового уровня;
техническое перевооружение российской электронной промышленности на основе передовых технологий и расширение производства электронной компонентной базы для обеспечения внутреннего рынка и увеличения экспорта наукоемкой продукции;
создание научно-технического задела по перспективным технологиям и конструкциям электронных компонентов и процессов проектирования перспективных видов электронной компонентной базы и аппаратуры;
активизация процессов коммерциализации новых технологий электронной компонентной базы;
обеспечение российских разработок радиоэлектронных средств и стратегически значимых систем российской электронной компонентной базой высокого качества.
В результате реализации подпрограммы предполагается создание современной технологической базы и модернизация промышленного производства электронной компонентной базы, необходимых для разработки и производства высокотехнологичной наукоемкой продукции мирового уровня в области важнейших технических систем (воздушный, морской и наземный транспорт, ракетно-космическая техника, машиностроительное и энергетическое оборудование, вычислительная техника, системы управления, связи и информатики), медицинской техники, образования, экологического контроля и обеспечивающих технологические аспекты национальной безопасности государства, решение задачи удвоения к 2010 году национального валового продукта, расширение возможностей для равноправного международного сотрудничества в сфере высоких технологий.
Осуществление мероприятий подпрограммы позволит на макроуровне:
увеличить объем продаж российской электронной компонентной базы на внутреннем и внешнем рынках;
значительно сократить технологическое отставание российской электронной промышленности от мирового уровня;
обеспечить большие возможности для развития всех отраслей промышленности;
создать условия для более эффективной реализации национальных проектов;
создать ориентированную на рынок инфраструктуру электронной промышленности (системоориентированные центры проектирования, дизайн-центры, специализированные производства по заказу, научно-технологический центр по микросистемотехнике);
активизировать инновационную деятельность и ускорить внедрение результатов научно-технической деятельности в массовое производство;
обеспечить возможность создания вооружения, военной и специальной техники нового поколения, что повысит обороноспособность и безопасность государства.
Реализация подпрограммы позволит на микроуровне:
обеспечить обновляемость основных фондов организаций электронной промышленности и стимулировать создание современного высокотехнологичного производства;
создать крупные и эффективные диверсифицированные структуры (холдинги, концерны), способные конкурировать с лучшими иностранными фирмами, работающими в области электроники;
организовать производство массовой интеллектуально насыщенной и конкурентоспособной высокотехнологичной радиоэлектронной продукции, разнообразных современных телекоммуникационных услуг, включая радио и телевидение.
В социально-экономической сфере:
повысится качество жизни населения благодаря интеллектуализации среды обитания и расширению возможности использования электроники и информационных систем;
увеличится число рабочих мест в электронной отрасли, снизится отток талантливой части научно-технических кадров, повысится спрос на квалифицированные научно-технические кадры, будет обеспечено привлечение молодых специалистов и ученых и улучшится возрастная структура кадров;
улучшится экологическая ситуация за счет разработки экологически чистых технологий получения и обработки электронных материалов, развития новых электронных производств с повышенными требованиями к нейтрализации и утилизации вредных веществ и отходов, создания новых поколений датчиков, сенсоров и приборов контроля вредных и опасных веществ, введения автоматизированных систем контроля и раннего предупреждения техногенных катастроф и аварий.
В бюджетной сфере будет обеспечено увеличение базы налогообложения за счет значительного повышения объема продаж изделий электронной промышленности.
Подпрограмму предполагается выполнить в соответствии с федеральной целевой программой "Национальная технологическая база" на 2007-2011 годы в два этапа:
I этап - 2007-2009 годы;
II этап - 2008-2011 годы.
Индикаторы и показатели реализации подпрограммыВ качестве основного показателя успешной реализации подпрограммы принимается увеличение объемов продаж электронной продукции.
В 2005 году общий объем реализованной продукции предприятий электронной промышленности составил 13 млрд. рублей. Ожидается, что в 2011 году аналогичный показатель составит около 45 млрд. рублей. Темпы роста объемов производства будут сопоставимы с мировыми показателями и соответствовать задаче новой экономической доктрины России по увеличению внутреннего валового продукта.
Индикатором реализации подпрограммы является технологический уровень освоенных в производстве сверхбольших интегральных схем (оценка проводится по величине минимального размера элемента).
Ожидается, что в 2009 году организациями электронной промышленности будет освоен технологический уровень в 0,13 мкм, что обеспечит создание производственно-технологической базы для выпуска необходимой электронной компонентной базы, соответствующей потребностям российских потребителей. Значения индикатора и показателей реализации мероприятий подпрограммы приведены в приложении N 1.
III. Перечень мероприятий подпрограммыМероприятия подпрограммы приведены в приложении N 2 и структурированы по следующим важнейшим направлениям развития электронной компонентной базы:
сверхвысокочастотная электроника (сверхвысокочастотные транзисторы и твердотельные микросхемы);
радиационно стойкая электронная компонентная база;
микросистемная техника;
микроэлектроника;
электронные материалы и структуры;
группы пассивной электронной компонентной базы (радиоэлектронные компоненты и приборы опто- и фотоэлектроники, пьезо- и магнитоэлектроники, квантовой электроники, а также установочные изделия);
обеспечивающие работы (комплекс научно-исследовательских и опытно-конструкторских работ по управлению подпрограммой, анализу выполненных работ, оптимизации состава выполняемых работ, проведению конкурсного отбора, а также по разработке и реализации информационно-аналитической системы обеспечения программно-целевого подхода к развитию электронной техники, по созданию и внедрению комплекса стандартов надежности и качества электронной компонентной базы, экологической безопасности).
В рамках направления 1 "Сверхвысокочастотная электроника" предусмотрено выполнение комплекса мероприятий подпрограммы в следующих целях:
разработка базовых технологий производства мощных кремниевых сверхвысокочастотных транзисторов L и S частотных диапазонов для систем радиолокации с использованием активных фазированных антенных решеток и систем связи;
развитие технологий сверхвысокочастотных транзисторов и монолитных сверхвысокочастотных микросхем на гетероструктурах и широкозонных полупроводниках и организация их опытного производства;
организация опытно-технологической производственной линии изготовления сверхвысокочастотных транзисторов частотного диапазона до 150 ГГц для перспективных систем связи и локации;
разработка базовой технологии, базовых конструкций и организация выпуска новых типов магнитоэлектрических сверхвысокочастотных приборов;
разработка систем автоматизированного проектирования сверхвысокочастотных приборов, монолитных сверхвысокочастотных микросхем, сверхширокополосных твердотельных мощных сверхвысокочастотных модулей, приемо-передающих модулей на основе унифицированного конструктивно-технологического базиса и библиотек стандартных элементов.
Указанное направление определяет весь комплекс работ, выполнение которых обеспечит создание к 2012 году серийных образцов активных антенных фазированных решеток для радиолокаторов наземного, корабельного, воздушного и космического базирования для перспективных средств противоздушной обороны, воздушной и космической разведки, управления и связи, а также создание производственных мощностей для серийного производства специальной сверхвысокочастотной электронной компонентной базы и приемо-передающих модулей.
Сверхвысокочастотная электронная компонентная база востребована в аппаратуре сотовых (спутниковых, воздушных и наземных носителей) интерактивных телекоммуникаций в сантиметровом и миллиметровом диапазонах длин волн, на основе которых создаются принципиально новые стратегические системы передачи информации и управления. Роль этих систем будет настолько велика, что блокирование их деятельности или несанкционированный доступ приведет к ущербу в государственном масштабе, который сегодня вряд ли можно оценить. Поэтому аппаратура сотовых интерактивных телекоммуникаций должна и может создаваться только на отечественной твердотельной сверхвысокочастотной электронной компонентной базе.
Массовое применение сверхвысокочастотной электронной компонентной базы возможно и в гражданской сфере: в цифровом телевидении, в домашней и учрежденческой беспроводной информационно-управляющей сети, в автомобильных радарах для автоматической парковки, предупреждения столкновений и автопилотирования.
Подпрограмма предусматривает мероприятия по разработке:
технологии производства мощных транзисторов и монолитных сверхвысокочастотных микросхем на основе гетероструктур материалов группы А_3 В_5, объемных приемо-передающих сверхвысокочастотных субмодулей X диапазона;
базовой технологии производства мощных полупроводниковых приборов и монолитных интегральных систем сверхвысокочастотного диапазона на основе нитридных гетероэпитаксиальных структур;
базовой технологии производства сверхвысокочастотных интегральных схем высокой степени интеграции на основе гетероструктур "кремний-германий";
базовой технологии изготовления сверхвысокочастотных транзисторов и интегральных схем на широкозонных материалах;
базовых конструкций и технологии производства корпусов мощных сверхвысокочастотных транзисторов X, C, S, L и P диапазонов из малотоксичных материалов с высокой теплопроводностью;
базовых технологий производства и конструктивного ряда суперлинейных кремниевых сверхвысокочастотных транзисторов S и L диапазонов;
технологии измерений и базовых конструкций установок автоматизированного измерения параметров нелинейных моделей сверхвысокочастотных полупроводниковых структур, мощных транзисторов и монолитных интегральных систем X, C, S, L и P диапазонов для их массового производства;
базовых технологий для создания нового поколения мощных вакуумно-твердотельных малогабаритных модулей с улучшенными массогабаритными и спектральными характеристиками для перспективных радиоэлектронных систем двойного применения;
технологии изготовления сверхбыстродействующих приборов (до 150 ГГц) на наногетероструктурах с квантовыми дефектами;
базовой технологии портативных фазированных блоков аппаратуры миллиметрового диапазона длин волн на основе магнитоэлектронных, твердотельных (GaAs) и высокоскоростных цифровых приборов и устройств с функциями адаптации и цифрового диаграммообразования.
Дальнейшее расширение сверхвысокочастотного диапазона связано с созданием в стране электронной компонентной базы с рабочими частотами 40 ГГц и более. Перспективными материалами для таких электронных компонентных баз являются широкозонные полупроводники (нитрид галлия и карбид кремния) для мощных сверхвысокочастотных полупроводниковых приборов и кремний-германий для монолитных интегральных схем. Работы с этими материалами за рубежом активно развиваются последние 3-5 лет. В России их использование сдерживается недостаточным объемом работ по созданию и совершенствованию технологии производства как самих материалов, так и электронной компонентной базы на их основе.
В рамках направления 2 "Радиационно стойкая электронная компонентная база" предусмотрено выполнение комплексных мероприятий подпрограммы в целях создания:
базовых технологий изготовления радиационно стойких специализированных больших интегральных схем уровней 0,5 - 0,35 мкм на структурах "кремний на сапфире";
технологии проектирования и изготовления серий логических и аналоговых радиационно стойких приборов на базе структуры "кремний на изоляторе" с проектными нормами до 0,25 - 0,18 мкм;
базовых технологий радиационно стойких специализированных больших интегральных схем энергонезависимой памяти;
технологии структуры "кремний на сапфире" для лицензионно-независимых специализированных цифровых сверхбольших интегральных схем, микроконтроллеров и схем интерфейса;
технологии радиационно стойких силовых приборов.
Предполагается разработать принципиально новую технологию с применением элементов памяти на основе фазовых структурных переходов вещества, нечувствительных к воздействию практически любых видов радиации и обеспечивающих создание универсального типа памяти для всех встроенных применений в микроконтроллерах и микропроцессорах. При этом резко сократится номенклатура применяемых элементов. Кроме того, будут разработаны качественно новые приборы на структурах ультратонкого кремния (32-разрядные микропроцессоры, микроконтроллеры, умножители, базовые матричные кристаллы до 200 тыс. вентилей, программируемые логические интегральные схемы, функционально ориентированные процессоры, аналоговые, аналого-цифровые и цифроаналоговые специализированные сверхбольшие интегральные схемы).
Необходимость выполнения работ обусловлена задачей сохранения паритета с другими ядерными державами в области стратегических ядерных сил. Аналогичные работы были выполнены в США в 2001-2005 годах в рамках Программы ускоренного развития субмикронной радиационно стойкой электронной компонентной базы для нового поколения стратегических ядерных сил. Нужно учитывать, что закупки лицензий на эти технологии на мировом рынке невозможны из-за ограничений, накладываемых международными соглашениями о нераспространении ядерных технологий.
В рамках направления 3 "Микросистемная техника" предусмотрено выполнение комплекса мероприятий в целях разработки:
базовой технологии прецизионного формирования микроэлектромеханических трехмерных структур;
системы автоматизированного проектирования микроэлектромеханических интегрированных систем, сенсоров механических и электрических величин, гироскопов, прецизионных акселерометров, включая создание специализированного центра проектирования микроэлектромеханических систем на базе библиотек стандартных элементов;
библиотеки стандартных элементов микроэлектромеханических устройств с использованием пьезоэлектрических материалов и системы автоматизированного проектирования фильтров, резонаторов, пьезоактюаторов, пьезогироскопов, гидроакустических антенн и других приборов.
Развертывание работ по указанному направлению обусловлено необходимостью удовлетворения резко возросшего спроса на микроэлектромеханические системы на внутреннем и мировом рынках. Так, объемы мирового рынка в 2005 году составили 7,1 млрд. долларов США. По прогнозу, рыночная потребность в 2010 году простейших систем, разработка и производство которых под силу большинству российских микроэлектронных производств, составит более 850 млн. штук (более 30 млрд. рублей в год), что дает возможность выхода российских производителей на мировой рынок.
Отставание России от передовых стран в области микросистемной техники не так значительно в связи с тем, что конкретные прикладные результаты в мировом масштабе были получены только в 90-е годы и технологические нормы для производства микроэлектромеханических систем доступны большинству предприятий отрасли.
В 2007 году планируется начать выполнение комплекса научно-исследовательских и опытно-конструкторских работ по разработке базовых технологий и базовых конструкций микроакустоэлектромеханических, микроаналитических, микрооптоэлектромеханических, радиочастотных микроэлектромеханических систем и микросистем анализа магнитных полей. В результате будут разработаны датчики физических величин, в частности давления, температуры, деформации, крутящего момента, микроперемещений, резонаторов и других, а также освоены базовые технологии изготовления микросистем на основе процессов формирования специальных слоистых структур, чувствительных к газовым, химическим и биологическим компонентам внешней среды и способных обнаруживать опасные, токсичные, горючие и взрывчатые вещества.
Учитывая мультипликативный эффект развития микросистемной техники для других отраслей промышленности, реализация этого направления расширяет возможности автомобильного, авиационного и ракетно-космического машиностроения, навигации, здравоохранения, информационных, телекоммуникационных и военных технологий, что позволит обеспечить реализацию национальных приоритетов технологического развития и повысить экспортный потенциал России в области высоких технологий.
В рамках направления 4 "Микроэлектроника" предусмотрено выполнение комплекса мероприятий подпрограммы в целях:
разработки базовых технологий специализированных больших интегральных схем, в том числе технологии комплементарных полевых транзисторных структур уровня 0,25 - 0,13 мкм на пластинах диаметром 200 мм с созданием опытного производства;
разработки технологии изготовления шаблонов с фазовым сдвигом и коррекцией оптического эффекта близости для производства специализированных сверхбольших интегральных схем и организации межотраслевого центра проектирования, изготовления и каталогизации шаблонов технологического уровня до 0,13 мкм;
ускоренного развития систем проектирования сложных специализированных сверхбольших интегральных схем (включая схемы "система на кристалле"), ориентированных на разработку конкурентоспособных электронных систем мультимедиа, телекоммуникаций, систем радиолокации, космического мониторинга, цифровых систем обработки и передачи информации, цифрового телевидения и радиовещания, систем управления технологическими процессами и транспортом, систем безналичного расчета, научного приборостроения и обучения, систем идентификации, сжатия и кодирования информации, медицинской техники и экологического контроля;
разработки новых поколений электронной компонентной базы, в том числе функционально полной номенклатуры аналоговых и цифровых больших интегральных схем для комплектации и модернизации действующих радиоэлектронных систем и аппаратуры, включая задачи импортозамещения;
разработки сложнофункциональных блоков для обработки, сжатия и передачи информации, сигнальных и цифровых процессоров (в том числе программируемых), микроконтроллеров, цифроаналоговых и аналого-цифровых преобразователей, шин и интерфейсов (драйверов, приемопередатчиков), а также специализированных блоков для телекоммуникации и связи;
разработки комплектов специализированных сверхбольших интегральных схем "система на кристалле", имеющих до 10-50 млн. транзисторов, для систем цифровой обработки сигналов (цифровое телевидение, радиовещание, сотовая и радиотелефонная связь, космический мониторинг, системы управления и контроля);
разработки приборов силовой электроники, включая базовую технологию и конструкцию производства тиристоров и мощных транзисторов, силовых ключей на токи до 1500 А и напряжение до 6500 В, а также базовую технологию производства и конструкцию силовых микросхем, гибридных силовых приборов тиристорного типа, высоковольтных драйверов управления и интеллектуальных силовых модулей;
создания центров проектирования перспективной электронной компонентной базы, в том числе промышленно ориентированных центров проектирования и испытания электронной компонентной базы в составе отраслевой многоуровневой системы проектирования сложной электронной компонентной базы и аппаратуры (топологического и схемотехнического уровней), системоориентированных базовых центров сквозного проектирования радиоэлектронной аппаратуры на основе функционально сложной электронной компонентной базы и специализированных сверхбольших интегральных схем "система на кристалле", а также развития системы проектирования сложной радиоэлектронной аппаратуры и стратегически значимых систем, учебных центров проектирования электронной компонентной базы для решения задачи обучения и подготовки высококвалифицированных специалистов.
Создаваемые центры проектирования должны освоить методы проектирования специализированных сверхбольших интегральных схем с технологическим уровнем до 0,09 мкм и систему заказов на зарубежных специализированных производствах, действующих в мировой системе разделения труда.
В рамках направления 5 "Электронные материалы и структуры" мероприятия подпрограммы ориентированы в первую очередь на создание технологий для освоения принципиально новых материалов для современной электронной компонентной базы (структуры "кремний на изоляторе", широкозонные полупроводниковые структуры и гетероструктуры, структуры с квантовыми эффектами, композитные, керамические и ленточные материалы, специальные органические материалы). Среди новых разрабатываемых материалов наиболее перспективными являются нитрид галлия, карбид кремния, алмазоподобные пленки и другие.
Полупроводниковые материалы пользуются повышенным спросом как на внутреннем, так и на внешнем рынках, что создает хорошие перспективы для увеличения экспорта.
Предусмотрено выполнение комплекса мероприятий подпрограммы в следующих целях:
разработка базовых технологий и организация производства, в том числе кремниевых пластин диаметром 200 мм технологического уровня 0,18 - 0,13 мкм, структур "кремний на изоляторе", "кремний на сапфире" диаметром 150 мм и технологического уровня 0,5 - 0,35 мкм, пластин радиационно облученного кремния диаметром 150 мм для приборов силовой электроники, гетероструктур диаметром 100-150 мм с квантовыми эффектами для сверхвысокочастотной твердотельной электроники, высокоинтенсивных приборов светотехники, лазеров и специальных матричных приемников, керамических материалов и плат, материалов для пленочных технологий, композитов, клеев и герметиков для выпуска новых классов радиоэлектронных компонентов и приборов, корпусов и носителей, "бессвинцовых" сложных композиций для экологически чистой сборки электронной компонентной базы и монтажа в составе радиоэлектронной аппаратуры;
разработка экологически чистой технологии нанесения гальванопокрытий с замкнутым циклом нейтрализации и утилизации, высокоэффективных процессов формирования полимерных покрытий, алмазоподобных пленок и наноструктурированных материалов, процессов самоформирования пространственных структур, новых классов сложных полупроводниковых материалов с большой шириной запрещенной зоны для высоковольтной и высокотемпературной электроники (карбид кремния, алмазоподобные материалы, сложные нитридные соединения), новых классов полимерных пленочных материалов, включая многослойные и металлизированные, а также для задач политроники и сборочных процессов массового производства электронной компонентной базы широкого потребления.
В рамках направления 6 "Группы пассивной электронной компонентной базы" предусмотрено выполнение комплекса мероприятий в следующих целях:
разработка технологий и базовых конструкций типового ряда радиоэлектронных компонентов требуемой номенклатуры, в том числе:
магнитоуправляемых контактов, тиратронов и искровых разрядников;
коммутационных и установочных изделий;
разработка технологий и базовых конструкций новых поколений, в том числе:
новых классов и групп резисторов и конденсаторов с повышенными техническими и эксплуатационными характеристиками, включая развитие производственных мощностей по их выпуску;
сверхъярких высокоэкономичных светодиодов красного свечения для "стоп-сигналов" транспортной техники;
высокоэффективных широкоспектральных твердотельных осветительных приборов для бытовых и промышленных целей;
гибких экранов, информационных табло и сигнальных устройств на полимерной основе, включая варианты "прозрачных" экранов;
светочувствительных твердотельных матричных приемников для наблюдения в широком спектральном диапазоне с вариациями освещенности;
рентгеночувствительных матричных приемников для медицинской техники нового поколения;
приборов пьезотехники и акустоэлектроники для научной, медицинской и связной аппаратуры;
приборов магнитоэлектроники для радиоэлектронной аппаратуры, сверхвысокочастотной техники, диагностической и научной аппаратуры;
фотоэлектронных умножителей широкого спектрального диапазона;
магнитоэлектрических приборов расширенного диапазона частот;
мощных технологических лазеров с полупроводниковой накачкой;
эксимерных лазеров для электронных технологий и медицины;
базовых модулей лазерных локаторов и лазерных комплексов.
Рыночная потребность в указанных видах электронной компонентной базы достаточно высока, более того, большая часть вновь разрабатываемых видов электронной компонентной базы и изделий электронной техники (высокояркостные твердотельные источники света и экраны, солнечные элементы и батареи, приборы акустоэлектроники, магнито-, пьезоэлектроники) не только обладают высокими потребительскими свойствами, но и дают значительный экономический эффект за счет энергосбережения и интеграции функций.
Для создания нового технического уровня резисторов планируются работы по разработке технологии сверхпрецизионных резисторов, используемых для аппаратуры двойного назначения, технологии особо стабильных и особо точных резисторов широкого диапазона, технологии интегрированных резистивных структур с повышенными технико-эксплуатационными характеристиками на основе микроструктурированных материалов и методов групповой сборки, технологии нелинейных резисторов (варисторов, позисторов, термисторов) в чип-исполнении, технологии автоматизированного производства толстопленочных чип- и микрочип-резисторов.
Для создания новых классов конденсаторов будут проведены работы по изготовлению танталовых оксидно-полупроводниковых и оксидно-электролитических конденсаторов, разработке технологии производства конденсаторов с органическим диэлектриком и повышенными удельными характеристиками и организации производства таких конденсаторов.
Для совершенствования качества и технических характеристик коммутаторов и переключателей планируются работы по созданию технологии базовых конструкций высоковольтных (быстродействующих, мощных) вакуумных выключателей нового поколения, технологии газонаполненных высоковольтных высокочастотных коммутирующих устройств для токовой коммутации цепей с повышенными техническими характеристиками, технологии изготовления малогабаритных переключателей с повышенными сроками службы для печатного монтажа, а также технологии серий герметизированных магнитоуправляемых контактов и переключателей широкого частотного диапазона.
Для создания новых классов приборов акустоэлектроники и пьезотехники планируется провести разработку прецизионных температуростабильных высокочастотных (до 2 ГГц) резонаторов на поверхностных акустических волнах, разработку ряда радиочастотных пассивных и активных акустоэлектронных меток-транспондеров, работающих в реальной помеховой обстановке, для систем радиочастотной идентификации и систем управления доступом, разработку базовой конструкции и промышленной технологии производства пьезокерамических фильтров в корпусах для поверхностного монтажа, разработку промышленной технологии акустоэлектронной компонентной базы для задач мониторинга, робототехники и контроля функционирования различных механизмов, средств и систем, разработку базовой технологии производства функциональных законченных устройств стабилизации, селекции частоты и обработки сигналов, а также разработку технологии изготовления высокочастотных резонаторов и фильтров на объемных акустических волнах для телекоммуникационных и навигационных систем.
Работы по приборам инфракрасной техники будут сконцентрированы в области разработки:
технологии фоточувствительных приборов с матричными приемниками высокого разрешения для аппаратуры контроля изображений;
технологии унифицированных электронно-оптических преобразователей, микроканальных пластин, пироэлектрических матриц и камер на их основе с чувствительностью до 0,1 К и широкого инфракрасного диапазона;
технологии создания интегрированных гибридных фотоэлектронных высокочувствительных и высокоразрешающих приборов для задач космического мониторинга и специальных систем наблюдения.
Для приборов квантовой электроники приоритетными будут работы по созданию технологий:
мощных полупроводниковых лазерных диодов (непрерывного и импульсного излучения) при снижении расходимости излучения в 5 раз для создания аппаратуры и систем нового поколения;
специализированных лазерных полупроводниковых диодов и лазерных волоконно-оптических модулей;
для лазерных навигационных приборов, включая интегральный оптический модуль лазерного гироскопа на базе сверхмалогабаритных кольцевых полупроводниковых лазеров инфракрасного диапазона, оптоэлектронные компоненты для широкого класса инерциальных лазерных систем управления движением гражданских и специальных средств транспорта;
полного комплекта электронной компонентной базы для производства лазерного устройства определения наличия опасных, взрывчатых, отравляющих и наркотических веществ в контролируемом пространстве.
Приборы светотехники и отображения информации будут совершенствоваться на основе разработки:
технологий интегрированных катодолюминесцентных дисплеев двойного назначения со встроенным микроэлектронным управлением;
технологии высокояркостных светодиодов и индикаторов основных цветов свечения для систем подсветки в приборах нового поколения;
базовой технологии и конструкции оптоэлектронных приборов (оптроны, оптореле, светодиоды) в миниатюрных корпусах для поверхностного монтажа;
базовой технологии изготовления высокоэффективных солнечных элементов на базе использования кремния, полученного по "бесхлоридной" технологии и технологии "литого" кремния прямоугольного сечения;
технологий получения новых классов органических (полимерных) люминофоров, пленочных транзисторов на основе "прозрачных" материалов, полимерной пленочной основы и технологий изготовления крупноформатных гибких и особо плоских экранов на базе высокоразрешающих процессов струйной печати и непрерывного процесса изготовления "с катушки на катушку";
базовых конструкций и технологии активных матриц и драйверов плоских экранов на основе аморфных, поликристаллических, кристаллических кремниевых интегральных структур на различных подложках и созданных на их основе перспективных видеомодулей, включая органические электролюминесцентные, жидкокристаллические и катодолюминесцентные;
базовой конструкции и технологии крупноформатных полноцветных газоразрядных видеомодулей.
В рамках направления 7 "Обеспечивающие работы" предусмотрено выполнение комплекса мероприятий, включающих:
разработку межведомственной информационно-справочной системы и баз данных по библиотекам стандартных элементов, правилам проектирования, системе заказа шаблонов, изготовлению опытных образцов и аттестации проектов сложной электронной компонентной базы;
разработку научно обоснованных рекомендаций по дальнейшему развитию электронной компонентной базы и подготовку комплектов документов программно-целевого развития электронной техники в интересах обеспечения технологической и информационной безопасности России;
систематический контроль и анализ выполнения мероприятий подпрограммы, формирование годовых планов, проведение конкурсного отбора научно-исследовательских и опытно-конструкторских работ и анализ выполнения подпрограммы;
создание и внедрение комплекса методической и научно-технической документации по проектированию сложной электронной компонентной базы, по обеспечению надежности и качества, экологической безопасности и защите интеллектуальной собственности с учетом обеспечения требований Всемирной торговой организации.
IV. Обоснование ресурсного обеспечения подпрограммыРасходы на реализацию мероприятий подпрограммы составляют 38460 млн. рублей, в том числе:
а) за счет средств федерального бюджета - 23200 млн. рублей, из них:
на научно-исследовательские и опытно-конструкторские работы - 15880 млн. рублей;
на капитальные вложения - 7320 млн. рублей;
б) за счет средств внебюджетных источников - 15260 млн. рублей.
Ресурсное обеспечение подпрограммы предусматривает привлечение средств федерального бюджета и внебюджетных средств.
Средства федерального бюджета направляются в первую очередь на финансирование следующих приоритетных направлений развития электронной компонентной базы:
сверхвысокочастотная электроника, включая сверхвысокочастотные материалы;
радиационно стойкая электронная компонентная база, включая радиационно стойкие материалы и радиационно стойкую микроэлектронику;
микросистемная техника на базе микроэлектромеханических систем, интеллектуальных сенсоров и интегрированных структур, включая материалы для микросистемной техники;
базовые центры системного проектирования, в том числе межотраслевой центр проектирования, каталогизации и изготовления фотошаблонов.
Приоритетность направлений обусловлена имеющимся научно-техническим заделом, прогрессивностью новых исследований и результатов, удельным весом данного направления в общем объеме работ по развитию электроники и темпами развития специальной и гражданской техники.
Объемы финансирования приоритетных направлений развития электронной компонентной базы в 2007-2011 годах за счет средств федерального бюджета приведены в приложении N 3.
Наибольшие суммы средств на научные исследования выделяются на проведение научно-исследовательских работ в области развития сверхвысокочастотной техники, радиационно стойкой электронной компонентной базы и микросистемной техники (около 58 процентов). За пятилетний период планируется в первую очередь осуществить техническое перевооружение предприятий, работающих в области сверхвысокочастотной техники, радиационно стойкой электронной компонентной базы и микросистемной техники, для чего планируется выделить 54 процента всех капитальных вложений. При этом наибольшая сумма капитальных вложений (41 процент) будет выделена на создание и техническое оснащение базовых центров системного проектирования и межотраслевого центра фотошаблонов. Таким образом, на четыре приоритетных направления развития электронной компонентной базы в 2007-2011 годах планируется выделить 70 процентов всех финансовых средств, выделяемых на реализацию подпрограммы.
Объем финансирования научно-исследовательских и опытно-конструкторских работ по всем направлениям подпрограммы за счет внебюджетных средств будет не менее 7940 млн. рублей.
Источниками внебюджетных средств станут средства организаций - исполнителей работ и привлеченные средства (кредиты банков, заемные средства, средства потенциальных потребителей технологий и средств от эмиссии акций).
Капитальные вложения направляются на создание и освоение перспективных технологических процессов изготовления электронной компонентной базы, развитие производств нового технологического уровня, обеспечивающих ускоренное наращивание объемов производства конкурентоспособной продукции. Для реализации проектов по техническому перевооружению предприятиями привлекаются внебюджетные средства в объеме государственных капитальных вложений. Замещение внебюджетных средств, привлекаемых для выполнения мероприятий научно-исследовательских и опытно-конструкторских работ реконструкции и технического перевооружения организаций, средствами федерального бюджета не допускается.
Объемы и источники финансирования научно-исследовательских и опытно-конструкторских работ и капитальных вложений подпрограммы по годам приведены в приложении N 4.
Объемы финансирования подпрограммы за счет средств федерального бюджета и внебюджетных источников приведены в приложении N 5.
Распределение объемов финансирования подпрограммы за счет средств федерального бюджета по государственным заказчикам подпрограммы приведено в приложении N 6.
V. Механизм реализации подпрограммыУчитывая сложившуюся структуру федеральных органов исполнительной власти и общепромышленное значение выполнения подпрограммы, государственным заказчиком - координатором подпрограммы является Министерство промышленности и энергетики Российской Федерации, а государственными заказчиками - Федеральное агентство по промышленности, Федеральное агентство по атомной энергии, Федеральное космическое агентство, Федеральное агентство по науке и инновациям и Федеральное агентство по образованию.
Управление реализацией подпрограммы, а также контроль за ее выполнением будет осуществлять государственный заказчик - координатор федеральной целевой программы "Национальная технологическая база" на 2007-2011 годы.
Подпрограмма имеет межотраслевой характер и отвечает интересам развития большинства отраслей промышленности, производящих и потребляющих высокотехнологичную наукоемкую продукцию. Исполнителями подпрограммы будут научные и научно-производственные организации.
Управление реализацией подпрограммы будет осуществляться в соответствии с Порядком разработки и реализации федеральных целевых программ и межгосударственных целевых программ, в осуществлении которых участвует Российская Федерация, утвержденным постановлением Правительства Российской Федерации от 26 июня 1995 г. N 594, и положением о порядке управления реализацией программ, утверждаемым Министерством промышленности и энергетики Российской Федерации.
Для осуществления планирования работ и контроля за научно-техническим уровнем выполняемых работ создается научно-технический координационный совет, в состав которого включаются ведущие ученые и специалисты страны в области электронной компонентной базы, представители государственных заказчиков подпрограммы, а также организаций промышленности, использующих разрабатываемые в рамках подпрограммы изделия электронной техники и технологии для создания и производства радиоэлектронных и радиотехнических систем.
Координационный совет будет вырабатывать рекомендации по планируемым научно-исследовательским и опытно-конструкторским работам технологического развития, а также проводить экспертную оценку инвестиционных проектов.
Для осуществления текущего контроля и анализа хода работ по подпрограмме, подготовки материалов и рекомендаций по управлению реализацией подпрограммы организуется автоматизированная информационно-аналитическая система.
Головные исполнители (исполнители) мероприятий подпрограммы определяются в соответствии с законодательством Российской Федерации.
Головные исполнители в соответствии с государственным контрактом обеспечивают выполнение проектов, необходимых для реализации мероприятий подпрограммы, и организуют кооперацию соисполнителей.
Федеральное агентство по промышленности, Федеральное космическое агентство, Федеральное агентство по атомной энергии, Федеральное агентство по науке и инновациям и Федеральное агентство по образованию представляют в Министерство промышленности и энергетики Российской Федерации отчетность о результатах выполнения работ за отчетный год и дают предложения по формированию плана работ на следующий год.
Министерство промышленности и энергетики Российской Федерации в установленном порядке представляет в Министерство экономического развития и торговли Российской Федерации и Министерство финансов Российской Федерации отчетность о выполнении годовых планов и подпрограммы в целом, подготавливает и согласовывает предложения по финансированию подпрограммы в предстоящем году.
VI. Оценка социально-экономической и экологической эффективности подпрограммыЭффективность подпрограммы оценивается в течение расчетного периода, продолжительность которого определяется началом ее осуществления вплоть до максимального уровня освоения введенных новых мощностей.
За начальный год расчетного периода принимается 1-й год осуществления инвестиций или 1-й год разработки приоритетных образцов продукции, то есть 2007 год.
Конечный год расчетного периода определяется годом полного освоения в серийном производстве разработанной в период реализации подпрограммы продукции на созданных в этот период мощностях, а также 3 годами серийного производства.
Учитывая, что обновление производственных мощностей осуществляется в течение всего периода действия подпрограммы и завершается в 2011 году, а нормативный срок освоения введенных мощностей 1,5 - 2 года, то конечным годом расчетного периода с учетом 3 лет серийного производства принят 2016 год.
Экономическая эффективность реализации подпрограммы в отрасли характеризуется следующими показателями:
налоги, поступающие в бюджет и внебюджетные фонды, - 65343,9 млн. рублей;
чистый дисконтированный доход - 24615,6 млн. рублей;
бюджетный эффект - 46343,1 млн. рублей;
индекс доходности (рентабельность) бюджетных ассигнований по налоговым поступлениям - 3,4;
индекс доходности (рентабельность) инвестиций по чистому доходу предприятий - 1,78;
удельный вес средств федерального бюджета в общем объеме финансирования (степень участия государства) - 0,6;
срок окупаемости инвестиций из всех источников финансирования - 7,3 года, в том числе 2,3 года после окончания реализации подпрограммы;
срок окупаемости средств федерального бюджета - 1 год;
уровень безубыточности равен 0,67 при норме 0,7, что свидетельствует об эффективности и устойчивости подпрограммы к возможным изменениям условий ее реализации.
Результаты расчета показателей социально-экономической эффективности подпрограммы приведены в приложении N 7.
Социальная эффективность подпрограммы обусловлена количеством создаваемых рабочих мест (3550-3800 мест на момент завершения подпрограммы), а также существенным повышением технологического уровня новой электронной компонентной базы, который обеспечит снижение трудовых затрат на создание новых классов радиоэлектронной аппаратуры и систем и улучшение условий труда. Разработка новых классов электронной компонентной базы обеспечит создание широкой номенклатуры приборов и техники для технического обеспечения решения государственных социальных программ.
Экологическая эффективность подпрограммы определяется:
разработкой и освоением экологически чистых технологий производства электронной компонентной базы в процессе их производства;
новыми уровнями химической обработки на базе плазмохимических процессов, позволяющими исключить использование кислот и органических растворителей, а также экологически чистыми технологиями нанесения электролитических покрытий по замкнутому циклу, утилизацией и нейтрализацией отходов;
технологией "бессвинцовой" сборки и монтажа радиоэлектронной аппаратуры, полупроводниковых приборов и специализированных больших интегрированных схем;
высокоэффективными методами подготовки чистых сред и сверхчистых реактивов в замкнутых циклах, внедрением систем экологического мониторинга производства электронной компонентной базы и окружающей территории, кластерными технологическими системами обработки структур и приборов в технологических объемах малой величины с непосредственной подачей реагентов контролируемого минимального количества;
разработкой технологий утилизации электронной компонентной базы в рамках развиваемых технологий поддержания жизненного цикла.
Вновь создаваемые виды электронной компонентной базы (высокочувствительные датчики-сенсоры) и аппаратура на их основе будут использованы в создании более эффективных систем экологического контроля и мониторинга.
Электронная промышленность по технологической сути является самой экологически чистой отраслью экономики, и достижения по улучшению экологической обстановки, полученные в рамках совершенствования новых производств электронной компонентной базы, могут использоваться в других отраслях (методы ультрафильтрации, технологии улавливания и нейтрализации вредных веществ, обработки по замкнутым циклам, получение сверхчистой воды и сверхчистых реактивов).
ПриложенияПРИЛОЖЕНИЕ N 1
к подпрограмме "Развитие электронной
компонентной базы" на 2007-2011 годы
федеральной целевой программы
"Национальная технологическая база"
на 2007-2011 годы
ПРИЛОЖЕНИЕ N 2
к подпрограмме "Развитие электронной
компонентной базы" на 2007-2011 годы
федеральной целевой программы
"Национальная технологическая база"
на 2007-2011 годы
(млн. рублей, в ценах соответствующих лет)
<*> В числителе - указывается общая стоимость работ, в знаменателе - объем финансирования из федерального бюджета.
<**> Объемы финансирования будут уточнены после утверждения в установленном порядке проектно-сметной документации.
<***> Конкретный состав оборудования и работ будет определен на этапе технико-экономического обоснования.
Примечание. Срок получения предусмотренных настоящим перечнем результатов работ соответствует году окончания их финансирования.
ПРИЛОЖЕНИЕ N 3
к подпрограмме "Развитие электронной
компонентной базы" на 2007-2011 годы
федеральной целевой программы
"Национальная технологическая база"
на 2007-2011 годы
ПРИЛОЖЕНИЕ N 4
к подпрограмме "Развитие электронной
компонентной базы" на 2007-2011 годы
федеральной целевой программы
"Национальная технологическая база"
на 2007-2011 годы
(млн. рублей, в ценах соответствующих лет)
ПРИЛОЖЕНИЕ N 5
к подпрограмме "Развитие электронной
компонентной базы" на 2007-2011 годы
федеральной целевой программы
"Национальная технологическая база"
на 2007-2011 годы
(млн. рублей, в ценах соответствующих лет)
ПРИЛОЖЕНИЕ N 6
к подпрограмме "Развитие электронной
компонентной базы" на 2007-2011 годы
федеральной целевой программы
"Национальная технологическая база"
на 2007-2011 годы
(млн. рублей, в ценах соответствующих лет)
ПРИЛОЖЕНИЕ N 7
к подпрограмме "Развитие электронной
компонентной базы" на 2007-2011 годы
федеральной целевой программы
"Национальная технологическая база"
на 2007-2011 годы
Оценка и расчет показателей эффективности подпрограммы проведены в соответствии с методикой оценки и расчета для федеральной целевой программы "Национальная технологическая база" на 2007-2011 годы, так как подпрограмма "Развитие электронной компонентной базы" на 2007-2011 годы (далее - подпрограмма) является составной частью указанной Программы.
Расчеты коммерческой и бюджетной эффективности базировались на ориентировочных данных о бюджетных и внебюджетных ассигнованиях на научно-исследовательские и опытно-конструкторские работы и капитальные вложения подпрограммы и ожидаемых объемах производства высокотехнологичной наукоемкой продукции по годам расчетного периода (2007-2016 годы).
Эффективность подпрограммы оценивается в течение расчетного периода, продолжительность которого определяется началом осуществления подпрограммы вплоть до максимального уровня освоения введенных новых мощностей, а также 3 годами с момента серийного производства.
За начальный год расчетного периода принимается 1-й год осуществления инвестиций или 1-й год разработки опытных образцов продукции, то есть 2007 год.
Конечный год расчетного периода определяется полным освоением в серийном производстве разработанной в период реализации подпрограммы продукции на созданных в этот период мощностях.
Учитывая, что обновление производственных мощностей осуществляется в течение всего периода действия подпрограммы и завершается в 2011 году, а нормативный срок освоения введенных мощностей 1,5 - 2 года, то конечным годом расчетного периода с учетом 3 лет с момента серийного производства принят 2016 год.
Исходная информация по годовым объемам производства продукции была определена на основе прогнозных оценок. При этом объемы производства на 1-й стадии финансирования научно-исследовательских и опытно-конструкторских работ достигнуты за счет реализации мероприятий прошлых лет.
Капитальные вложения на реализацию подпрограммы предусматривают прежде всего техническое перевооружение производства и строительство уникальных объектов.
Для определения коммерческой и бюджетной эффективности подпрограммы были приняты следующие условия:
данные об ассигнованиях на научно-исследовательские и опытно-конструкторские работы и капитальные вложения, а также об объемах производства приведены в ценах соответствующих лет;
расчеты произведены с учетом фактора времени, то есть проведения (дисконтирования) будущих затрат и результатов к расчетному году с помощью коэффициента дисконтирования;
величина всех налогов и отчислений, поступающих в бюджет и внебюджетные фонды, определена в соответствии с действующим в настоящее время Налоговым кодексом Российской Федерации;
расчеты всех экономических показателей произведены в ценах соответствующих лет с учетом индексов-дефляторов, установленных Министерством экономического развития и торговли Российской Федерации до 2009 года, и с учетом складывающейся ситуации в отрасли дифференцированы для промышленной продукции и капитальных затрат с последующей экстраполяцией их до 2016 года.
Исходные данные, принятые для расчета коммерческой и бюджетной эффективности подпрограммы, приведены в таблице 1. Результаты расчетов приведены в таблице 2. Итоговые показатели эффективности подпрограммы приведены в таблице 3.
Экономическая эффективность подпрограммы в отрасли характеризуется следующими показателями.
При общей сумме инвестиций 38460 млн. рублей, включая 23200 млн. рублей бюджетных ассигнований на научно-исследовательские и опытно-конструкторские работы и капитальные вложения, и 15260 млн. рублей внебюджетных ассигнований реализация подпрограммы позволит получить в сфере производства за расчетный период (2007-2016 годы) чистый дисконтированный доход в размере 24615,6 млн. рублей, а чистый дисконтированный доход государства (бюджетный эффект) составит 46343,1 млн. рублей.
Всего налоговых поступлений от реализации подпрограммы с учетом бюджетных и внебюджетных ассигнований ожидается в размере 65343,9 млн. рублей.
Срок окупаемости всех инвестиций (бюджетных и внебюджетных ассигнований) за счет чистой прибыли и амортизации составит 7,3 года (или 2,3 года после окончания реализации подпрограммы), а бюджетных ассигнований за счет налоговых поступлений - 1 год.
Соответственно индексы доходности (рентабельность) составят для всех инвестиций - 1,78, для бюджетных ассигнований - 3,4.
Уровень безубыточности равен 0,67 при норме 0,7, что свидетельствует о высокой эффективности и степени устойчивости подпрограммы к возможным отклонениям условий ее реализации.
Таблица 1
Исходные данные для расчета коммерческой и бюджетной эффективности подпрограммы
Расчет коммерческой и бюджетной эффективности подпрограммы
(млн. рублей, в ценах соответствующих лет)
<*> После завершения подпрограммы.
Таблица 3
Итоговые показатели эффективности подпрограммы
<*> После завершения подпрограмм
<**> За 2007-2016 годы.
На сайте «Zakonbase» представлен ПОСТАНОВЛЕНИЕ Правительства РФ от 29.01.2007 N 54 "О ФЕДЕРАЛЬНОЙ ЦЕЛЕВОЙ ПРОГРАММЕ "НАЦИОНАЛЬНАЯ ТЕХНОЛОГИЧЕСКАЯ БАЗА" НА 2007-2011 ГОДЫ" в самой последней редакции. Соблюдать все требования законодательства просто, если ознакомиться с соответствующими разделами, главами и статьями этого документа за 2014 год. Для поиска нужных законодательных актов на интересующую тему стоит воспользоваться удобной навигацией или расширенным поиском.
На сайте «Zakonbase» вы найдете ПОСТАНОВЛЕНИЕ Правительства РФ от 29.01.2007 N 54 "О ФЕДЕРАЛЬНОЙ ЦЕЛЕВОЙ ПРОГРАММЕ "НАЦИОНАЛЬНАЯ ТЕХНОЛОГИЧЕСКАЯ БАЗА" НА 2007-2011 ГОДЫ" в свежей и полной версии, в которой внесены все изменения и поправки. Это гарантирует актуальность и достоверность информации.
При этом скачать ПОСТАНОВЛЕНИЕ Правительства РФ от 29.01.2007 N 54 "О ФЕДЕРАЛЬНОЙ ЦЕЛЕВОЙ ПРОГРАММЕ "НАЦИОНАЛЬНАЯ ТЕХНОЛОГИЧЕСКАЯ БАЗА" НА 2007-2011 ГОДЫ" можно совершенно бесплатно, как полностью, так и отдельными главами.
- Главная
- ПОСТАНОВЛЕНИЕ Правительства РФ от 29.01.2007 N 54 "О ФЕДЕРАЛЬНОЙ ЦЕЛЕВОЙ ПРОГРАММЕ "НАЦИОНАЛЬНАЯ ТЕХНОЛОГИЧЕСКАЯ БАЗА" НА 2007-2011 ГОДЫ"