Последнее обновление: 13.03.2025
Законодательная база Российской Федерации
8 (800) 350-23-61
Бесплатная горячая линия юридической помощи

- Главная
- "МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ПРИМЕНЕНИЮ БАКТЕРИЦИДНЫХ ЛАМП ДЛЯ ОБЕЗЗАРАЖИВАНИЯ ВОЗДУХА И ПОВЕРХНОСТЕЙ В ПОМЕЩЕНИЯХ" (утв. Минздравмедпромом РФ от 28.02.95 N 11-16/03-06)

Приложения
На рис. П.1 <*> приведена наиболее распространенная одноламповая стартерная схема включения бактерицидной лампы Л с токоограничивающим электромагнитным элементом в виде дросселя L. В этой схеме стартер Ст, подключенный параллельно лампе, обеспечивает ее зажигание. Стартер представляет собой малогабаритную неоновую лампу тлеющего разряда с двумя электродами, один из которых выполнен из биметаллической ленты. Выпускаются стартеры, у которых оба электрода выполнены из биметаллической пластины.
<*> Рисунки не приводятся.
На рис. П.2 приведена одноламповая бесстартерная схема включения. В этой схеме для предварительного нагрева электродов лампы применен маломощный трансформатор с двумя вторичными накальными обмотками Тн. Напряжение сети, приложенное к электродам (при холодных электродах), является недостаточным для пробоя и зажигания лампы. Трансформатор Тн обеспечивает предварительный нагрев электродов, и после того, когда их температура достигнет необходимого значения, происходит зажигание лампы. При работающей лампе напряжение на первичной обмотке уменьшается и соответственно уменьшается нагрев электродов, что исключает их перегрев.
Встречаются ПРА, предназначенные для последовательного включения двух ламп (см. П.3 и П.4) с напряжением на каждой из них 50 - 60 В. Непременным условием использования двухламповых ПРА с последовательным включением ламп является соблюдение неравенства , а также соответствие рабочего тока лампы с номинальному току ПРА.
В качестве токоограничивающих элементов могут применяться управляемые полупроводниковые приборы - транзисторы и тиристоры, на базе которых созданы различные модификации электронных ПРА. Относительная сложность схем таких ПРА во многих случаях применения оправдывается их достоинствами: малая масса ПРА из-за существенного сокращения затрат обмоточной меди и электротехнической стали, небольшие потери мощности, повышение КПД излучения и снижение акустического шума.
Использование дросселя в виде токоограничивающего элемента приводит к снижению коэффициента мощности сети (cos фи о ), численно равному:
где:
Uл - напряжение на лампе;
Uс - напряжение сети.
Применение ПРА с низким значением cos фио вызывает почти двухкратное увеличение потребляемого тока из сети и, следовательно, рост потерь мощности в питающих линиях.
Увеличение значения cos фи достигается двумя путями: либо подключением компенсирующего конденсатора Ск параллельно сети для одноламповых схем, либо использованием двухламповой схемы, в которой в цепи одной лампы включен дроссель, а в другой последовательно с дросселем включен балластный конденсатор Сб, как это изображено на рис. П.5.
При одноламповых схемах включения компенсация коэффициента мощности может быть осуществлена для группы ламп. В этом случае емкость компенсирующего конденсатора Ск, необходимая для достижения cos фи к = 0,9, определяется из соотношения:
где:
N - число ламп;
Iл - ток лампы, А;
Uс - напряжение сети, В;
фи к - arccos 0,9 = 26°;
Для подавления электромагнитных колебаний, создающих помехи радиоприему, применяются специальные конденсаторы Ср, включаемые параллельно лампе и сети (см. рис. П.1, П.2, П.3). Емкость таких конденсаторов примерно равна 0,05 мкф. Обычно они входят в комплект ПРА.
При работающей лампе ПРА является источником акустического шума. Основной причиной возникновения шума является вибрация металлических деталей (пластин магнитопровода, корпуса ПРА и деталей облучателя). Шумы излучаются в широком диапазоне частот от десятков Гц до десятков кГц, охватывающем область частот, воспринимаемых ухом человека. При некоторых обстоятельствах наличие постороннего шума в помещении может создать существенную помеху. Поэтому выпускаемые ПРА в зависимости от вида помещения разделяются на три класса: Н-3 - с нормальным уровнем шума - для промышленных зданий; Н-2 - с пониженным уровнем шума - для административно - служебных помещений; Н-1 - с особо низким уровнем шума - для бытовых, учебных и лечебных помещений.
Основные технические параметры ПРА приведены в таблице.
Таблица
ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ ПРА ДЛЯ РТУТНЫХ ЛАМП НИЗКОГО ДАВЛЕНИЯ
В соответствии со спектральным методом производится измерение спектральной плотности мощности излучения лампы Фл(лямбда) или другой радиометрической величины, представляющей интерес (например, спектральной плотности облученности Е (лямбда)),
лямбда спектральной плотности силы излучения I (лямбда) и т.п. и затем
л значение бактерицидного потока или другой эффективной величины (например, бактерицидной облученности, бактерицидной силы излучения и т.п.) рассчитывается по формуле:
где S(лямбда)отн. - относительная спектральная взвешивающая функция, учитывающая различную эффективность воздействия излучения различных длин волн на бактерии. При определении других эффективных величин (например, бактерицидной облученности Ебк, бактерицидной силы излучения Iбк и т.п.) в формуле подставляются другие измерения радиометрические величины (соответственно Е лямбда (лямбда), I лямбда (лямбда) и т.п.).
Пределы интегрирования лямбда1 = 250 нм, лямбда2 = 315 нм - это длины волн излучения, ограничивающие спектральный участок, за пределами которого излучение практически не оказывает бактерицидного действия, т.е. для которого значение S(лямбда)отн. = 0.
Значения функции S(лямбда)отн. приведены в табл. 1.
Измерения Ф (лямбда)лямбда должны производиться в соответствии с требованиями публикации МКО N 63 и ГОСТ 23198-78. Измерительная установка должна включать в себя спектральный прибор, схему освещения входной щели, приемник излучения, прибор для регистрации сигнала с приемника излучения и лампу сравнения, аттестованную в органах Госстандарта по значениям спектральной плотности облученности на участке 205 - 315 нм в соответствии с требованиями ГОСТ 8.195-89. Кроме того, в состав измерительной установки должны входить вспомогательные средства измерения и оборудование, обеспечивающие работу и контроль режимов измеряемой лампы, лампы сравнения и приемника излучения. Измерительная установка в целом должна быть метрологически аттестована в соответствии с требованиями ГОСТ 8.326-78.
Примерный состав спектральной установки:
спектральный прибор - спаренные монохроматоры с дифракционной решеткой МДР 23;
схема освещения - диффузно отражающая пластинка или полый шар, выполненные из материала политетрафторэтилен (холон), кварцевая линза;
приемник излучения - фотоэлектронный умножитель ФЭУ-100;
приборы регистрации сигнала приемника - Щ-300, Ф-30;
лампа сравнения - кварцевая галогенная лампа накаливания КГМ 110-1000;
блок питания фотоумножителя - ВС-22;
блок питания лампы сравнения - БП-120-10;
приборы контроля режима питания лампы сравнения - образцовая катушка сопротивления Р 310, Ф 30. Спектральный метод рекомендуется для использования в хорошо оснащенных лабораториях предприятий - разработчиков бактерицидных ламп и бактерицидных облучательных приборов.
В качестве примера в таблице приведены результаты измерения спектрального распределения облученности на расстоянии 0,5 м, создаваемой бактерицидной лампой ДБ 8. На участке 220 - 320 нм облученности даны для интервалов шириной 2 нм, в спектральной области 320 - 800 нм - для интервалов 10 нм - середина интервалов.
Таблица
Расчеты, выполненные по результатам измерений, дают следующие значения параметров лампы ДБ 8: облученность в интервале 220 - 320 нм составляет Е = 0,737 Вт/кв. м, бактерицидная облученность Ебк = 0,600 Вт/кв. м (или в прежней системе единиц Ебк = 0,712 бакт/кв. м; облученность в интервале 220 - 800 нм составляет Е = 0,820 Вт/кв. м.
Приложение 3
БАКТЕРИОЛОГИЧЕСКИЙ КОНТРОЛЬ ЗА ПРИМЕНЕНИЕМ БАКТЕРИЦИДНЫХ ЛАМП1. Исследования микробной необсеменности воздухаБактериологические исследования воздуха предусматривают определение общего содержания микроорганизмов в 1 куб. м воздуха и определение содержания золотистого стафилококка в 1 куб. м воздуха.
Пробы воздуха отбирают аспирационным методом с помощью прибора Кротова (прибор для бактериологического анализа воздуха, модель 818).
Для определения общего содержания микроорганизмов протягивают 100 литров воздуха со скоростью 25 л в минуту (4 минуты). Для определения золотистого стафилококка - 250 л воздуха (10 минут) с той же скоростью.
Примечание. При отсутствии в лаборатории прибора Кротова возможно использовать для этих целей другие аспирационные приборы (пробоотборники ПАБ-2, импактор Андерсена и др.).
Для определения общего содержания микроорганизмов в 1 куб. м воздуха отбор проб производится на 2% питательном агаре. После инкубации при 37 °C в течение 24 часов производят подсчет выросших колоний и делают пересчет на 1 куб. м воздуха.
Для определения золотистого стафилококка в 1 куб. м воздуха отбор проб производят на желточно - солевом агаре (ЖСА). После инкубации посевов при 37 °C в течение 24 часов при комнатной температуре отбирают подозрительные колонии, которые подвергают дальнейшему исследованию в соответствии с Приказом МЗ СССР N 691 от 28.12.1989.
Примеры оценки микробной обсеменности воздуха приведены в табл. (Приказ МЗ СССР N 720 от 31.07.78).
<*> КОЕ - колониеобразующие единицы.
Для контроля обсемененности воздуха боксированных и других помещений, требующих асептических условий для работы, может быть использован седиментационный метод. В соответствии с этим методом на рабочий стол ставят 2 чашки Петри с 2% питательным агаром и открывают их на 15 минут. Посевы инкубируют при температуре 37 °C в течение 48 часов. Допускается рост не более 3 колоний на чашке.
2. Исследования микробной обсемененности поверхностейБактериологическое исследование микробной обсемененности поверхностей ограждений помещений и оборудования предусматривает обнаружение микроорганизмов семейств Enterobacteriaceae, Starh. aureus, Pseudomonas aeruginosa.
Отбор проб с поверхностей осуществляется методом смывов. Взятие смывов производят стерильным ватным тампоном на палочках, вмонтированных в пробки с 5 мл стерильной 1% пептонной водой. Тампоны увлажняют питательной средой, делают смыв и помещают в ту же пробирку и погружают в пептонную воду. Смыв проводят с площади не менее 100 кв. см, тщательно протирая поверхность.
Из каждой отобранной пробы производят посев непосредственно влажным тампоном на чашку Петри с желточно - солевым агаром и 0,5 мл смывной жидкости, засевают в 0,5 мл бульона с 6,5% хлорида натрия для выделения золотистого стафилококка. Для выявления энтеробактерий и Псеудомонас аеругиноза посев производят из пробирок с 1% пептонной водой после инкубации при 37 °C в течение 18 - 20 часов на среду Эндо.
Дальнейшее исследование проводят в соответствии с Приказом МЗ СССР от 28.12.89 N 691 "О профилактике внутрибольничной инфекции в акушерских стационарах", "Методическими указаниями по микробиологической диагностике заболеваний, вызываемых энтеробактериями" МЗ СССР N 04-723/3 от 17.12.84 и "Методическими рекомендациями по определению грамотрицательных потенциально патогенных бактерий - возбудителей внутрибольничных инфекций" МЗ СССР от 03.06.86.
При оценке эффективности воздействия бактерицидного облучения на плесневые грибы бактериологические исследования проводятся с применением среды Сабуро.
Приложение 4
ПЕРЕЧЕНЬ ОРГАНИЗАЦИЙ, ОКАЗЫВАЮЩИХ УСЛУГИ ПО ПРИМЕНЕНИЮ БАКТЕРИЦИДНЫХ ЛАМП- Главная
- "МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ПРИМЕНЕНИЮ БАКТЕРИЦИДНЫХ ЛАМП ДЛЯ ОБЕЗЗАРАЖИВАНИЯ ВОЗДУХА И ПОВЕРХНОСТЕЙ В ПОМЕЩЕНИЯХ" (утв. Минздравмедпромом РФ от 28.02.95 N 11-16/03-06)