в базе 1 113 607 документа
Последнее обновление: 21.01.2025

Законодательная база Российской Федерации

Расширенный поиск Популярные запросы

8 (800) 350-23-61

Бесплатная горячая линия юридической помощи

Навигация
Федеральное законодательство
Содержание
  • Главная
  • "ПОЯСНЕНИЯ К ТОВАРНОЙ НОМЕНКЛАТУРЕ ВНЕШНЕЭКОНОМИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ РОССИЙСКОЙ ФЕДЕРАЦИИ (ТН ВЭД РОССИИ)" (утв. ГТК РФ) (Том I, раздел VI, группы 28, 29)
действует Редакция от 14.11.2002 Подробная информация
"ПОЯСНЕНИЯ К ТОВАРНОЙ НОМЕНКЛАТУРЕ ВНЕШНЕЭКОНОМИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ РОССИЙСКОЙ ФЕДЕРАЦИИ (ТН ВЭД РОССИИ)" (утв. ГТК РФ) (Том I, раздел VI, группы 28, 29)

Подгруппа VI Разные неорганические продукты

2843 Металлы драгоценные в коллоидном состоянии; соединения неорганические или органические драгоценных металлов, определенного или неопределенного химического состава; амальгамы драгоценных металлов:
2843 10- металлы драгоценные в коллоидном состоянии
- соединения серебра:
2843 21- - нитрат серебра
2843 29- - прочие
2843 30- соединения золота
2843 90- соединения прочие; амальгамы

А. Драгоценные металлы в коллоидном состоянии

В данную товарную позицию включаются драгоценные металлы, указанные в группе 71 (то есть серебро, золото, платина, иридий, осмий, палладий, родий и рутений), при условии, что они находятся в коллоидном состоянии.

Эти драгоценные металлы в коллоидном состоянии получают путем диспергирования или катодного распыления, или восстановлением одной из их неорганических солей.

Коллоидное серебро находится в виде небольших зерен или хлопьев голубоватого, коричневатого или зеленовато - серого цвета с металлическим блеском. Оно используется в медицине как антисептик.

Коллоидное золото может быть красным, фиолетовым, голубым или зеленым и используется для тех же целей, что и коллоидное серебро.

Коллоидная платина находится в виде мелких серых частиц и обладает замечательными каталитическими свойствами.

Эти металлы в коллоидном состоянии (например, золото) включаются в данную товарную позицию, если они поставляются в виде коллоидного раствора, содержащего защитные коллоиды (такие как желатин, казеин, рыбий клей).

Б. Неорганические или органические соединения драгоценных металлов, определенного или неопределенного химического состава

Это следующие соединения:

I. Оксиды, пероксиды и гидроксиды драгоценных металлов, аналогичные соединениям подгруппы IV.

II. Неорганические соли драгоценных металлов, аналогичные соединениям подгруппы V.

III. Фосфиды, карбиды, гидриды, нитриды, силициды и бориды, аналогичные соединениям товарных позиций 2848 - 2850 (такие как фосфид платины, гидрид палладия, нитрид серебра, силицид платины).

IV. Органические соединения драгоценных металлов, аналогичные соединениям группы 29.

В данную товарную позицию включаются также соединения, содержащие как драгоценные металлы, так и другие металлы (например, двойные соли недрагоценного металла и драгоценного металла, сложные эфиры, содержащие драгоценные металлы).

Наиболее распространенные соединения драгоценных металлов перечислены ниже:

1. Соединения серебра:

а) оксиды серебра. Оксид дисеребра (Ag2O) представляет собой коричневато - черный порошок, малорастворимый в воде. На свету он становится черным.

Оксид серебра (AgO) - серовато - черный порошок.

Оксиды серебра используются, inter alia, в производстве аккумуляторов;

б) галогениды серебра. Хлорид серебра (AgCl) - белая масса или плотный порошок, не растворимый в воде, темнеющий на свету; его упаковывают в темноокрашенные непрозрачные контейнеры. Используется в фотографии, в производстве керамики, в медицине и для серебрения.

Кераргириты (или роговая серебряная обманка), природные хлориды и йодиды серебра не включаются (товарная позиция 2616).

Бромид серебра (желтоватый), йодид серебра (желтый) и фторид серебра используются для тех же целей, что и хлориды;

в) сульфид серебра. Искусственный сульфид серебра (Ag2S) - тяжелый серо - черный порошок, не растворимый в воде, используется для получения стекла.

Природный сульфид серебра (аргентит), природный сульфид серебра и сурьмы (пираргирит, стефанит, полибазит) и природный сульфид серебра и мышьяка (прустит) не включаются (товарная позиция 2616);

г) нитрат серебра (AgNO3) - белые кристаллы, растворимые в воде, токсичные, повреждают кожу. Используется для серебрения стекла или металлов; для окрашивания шелка или рога; в фотографии; для производства несмываемых чернил; как антисептик или средство против паразитов. Иногда его называют "ляпис", хотя это название также применимо к нитрату серебра, сплавленному с небольшим количеством нитрата натрия или калия, а иногда и с небольшим количеством хлорида серебра с целью получения прижигающих средств (группа 30);

д) прочие соли и неорганические соединения.

Сульфат серебра (Ag2SO4), кристаллы.

Фосфат серебра (Ag3PO4), желтоватые кристаллы, малорастворимые в воде; используются в медицине, фотографии и оптике.

Цианид серебра (AgCN), белый порошок, темнеющий на свету, не растворимый в воде; используется в медицине и для электроосаждения серебра. Тиоцианат серебра (AgSCN) имеет аналогичный вид и используется как усилитель в фотографии.

Комплексные цианидные соли серебра и калия (KAg(CN)2) или серебра и натрия (NaAg(CN)2) представляют собой белые растворимые соли, используемые при нанесении электролитического покрытия.

Фульминат серебра (гремучее серебро), белые кристаллы, взрывающиеся при легком ударе, опасные в обработке; используются для производства капсюлей - детонаторов.

Дихромат серебра (Ag2Cr2O7), кристаллический рубиново - красный порошок, малорастворимый в воде; используется при исполнении художественных миниатюр (серебряный красный, пурпурный красный).

Перманганат серебра, кристаллический темно - фиолетовый порошок, растворимый в воде; используется в противогазах.

Азид серебра, взрывчатое вещество;

е) органические соединения серебра. Они включают:

i) лактат серебра (белый порошок) и цитрат серебра (желтоватый порошок); используются в фотографии и как антисептики;

ii) оксалат серебра, который разлагается и взрывается при нагревании;

iii) ацетат бензоат, бутират, циннамат, пикрат, салицилат, тартрат и валерат серебра;

iv) протеинаты, нуклеаты, нуклеинаты, альбуминаты, пептонаты, вителлинаты и таннаты серебра.

2. Соединения золота:

а) оксиды. Оксид одновалентного золота (Au2O). Нерастворимый темно - фиолетовый порошок. Оксид трехвалентного золота (Au2O3) (ангидрид трехвалентного золота) - коричневый порошок; соответствующая кислота - гидроксид золота или кислота (Au(OH)3), черный продукт, разлагающийся на свету, из которого получают аураты щелочных металлов;

б) хлориды. Хлорид одновалентного золота (AuCl), желтоватый или красноватый кристаллический порошок. Трихлорид золота (AuCl3) (хлорид трехвалентного золота, бурый хлорид) - красновато - коричневый порошок или кристаллическая масса, очень гигроскопичная, часто поставляется в герметичных канистрах или тубах. Тетрахлорзолотая (III) кислота (AuCl3-HCl-4H2O) (желтый хлорид) - желтые кристаллы, гидратированные; и хлороаураты щелочных металлов - красновато - желтые кристаллы, также включаются в данную товарную позицию. Эти продукты используются в фотографии (приготовление тонирующих растворов), в керамике или стекольной промышленности и в медицине.

В данную товарную позицию не включается пурпур кассия, представляющий собой смесь гидроксида олова и коллоидного золота (группа 32); он используется в производстве красок или лаков и, в частности, для окраски фарфора;

в) прочие соединения. Сульфид золота (Au2S3) - черноватое вещество, которое в сочетании с щелочными сульфидами щелочных металлов образует тиоаураты.

Двойные сульфиты золота и натрия (NaAu(SO3)), а также золота и аммония (NH4Au(SO3)) выпускаются в виде бесцветных растворов и используются при нанесении электролитического покрытия.

Ауротиосульфат натрия используется в медицине.

Цианид золота (AuCN), кристаллический желтый порошок, разлагающийся при нагревании, используется для электролитического золочения и в медицине. Реагирует с цианидами щелочных металлов, давая цианоаураты золота, такие как тетрацианоаурат калия (KAu(CN4)), который представляет собой белую растворимую соль, используемую при нанесении гальванического покрытия.

Ауротиоцианат натрия, кристаллизующийся в виде оранжевых игольчатых кристаллов, используется в медицине и в фотографии (тонирующие растворы).

3. Соединения рутения. Диоксид рутения (RuO2) - голубой продукт, тетраоксид рутения (RuO4) - оранжевый продукт. Трихлорид рутения (RuCl3) и тетрахлорид рутения (RuCl4) дают двойные хлориды с хлоридами щелочных металлов и аммино- или нитрозокомплексы. Существуют также двойные нитриты рутения или щелочных металлов.

4. Соединения родия. Гидроксид родия (Rh(OH)3) соответствует оксиду родия (Rh2O3), представляет собой черный порошок. Трихлорид родия (RhCl3) дает хлорородиты с хлоридами щелочных металлов; имеются также сульфат с его комплексными квасцами или фосфатами, нитрат и комплексные нитриты. Также существуют цианородиты и комплексные амминопроизводные или производные щавелевой кислоты.

5. Соединения палладия. Наиболее стабильный оксид - оксид двухвалентного палладия (PdO), единственный основной оксид. Это черный порошок, разлагающийся при нагревании.

Хлорид двухвалентного палладия (PdCl2), коричневый расплывающийся порошок, растворимый в воде и кристаллизующийся с 2 молекулами воды, используется в производстве керамики, в фотографии и при нанесении гальванического покрытия.

Хлоропалладит калия (K2PdCl4), коричневая соль, хорошо растворимая, используемая как индикатор наличия моноксида углерода, также включается сюда. Существуют также хлоропалладаты, амминосоединения (диаммины палладия), тиопалладаты, палладонитриты, цианопалладиты, палладооксалаты и сульфат двухвалентного палладия.

6. Соединения осмия. Диоксид осмия (OsO2) - темно - коричневый порошок. Тетраоксид осмия (OsO4) - летучий твердый продукт, кристаллизующийся в виде белых игольчатых кристаллов; он действует на глаза и легкие; используется в гистологии и микрографии. Тетраоксид дает осматы, такие как осмат калия (красные кристаллы), а при обработке аммиаком и гидроксидами щелочных металлов - осмиаматы, такие как осмиамат калия или натрия, представляющие собой желтые кристаллы.

Тетрахлорид осмия (OsCl4) и трихлорид осмия (OsCl3) дают хлороосматы и хлороосмиты щелочных металлов.

7. Соединения иридия. Кроме оксида иридия, имеются тетрагидроксид иридия (Ir(OH)4) - твердое голубое вещество, хлорид, хлороиридаты и хлороиридиты, двойные сульфаты и амминосоединения.

8. Соединения платины:

а) оксиды. Оксид двухвалентной платины (PtO) - фиолетовое или черноватое вещество в виде порошка. Оксид четырехвалентной платины, или диоксид платины (PtO2) образует несколько гидратов, из которых один - тетрагидрат (H2Pt(OH)6) - является комплексной кислотой (гексагидроксоплатиновая кислота), которой соответствуют соли, такие как гексагидроксоплатинаты щелочных металлов. Имеются также соответствующие амминокомплексы;

б) прочие соединения. Хлорид четырехвалентной платины (PtCl4) существует в виде коричневого порошка или желтого раствора; он используется как реагент. Технический хлорид платины (гексахлороплатиновая кислота) (H2PtCl6) - расплывающиеся призматические кристаллы, окрашенные в коричневато - красный цвет, растворимые в воде; используется в фотографии (тонирующие растворы), при нанесении гальванического покрытия, для глазурования керамики или для получения платиновой губки. Имеются соответствующие амминокомплексы платины.

Также существуют амминокомплексы, соответствующие тетрахлороплатиновой кислоте (H2PtCl4), которая представляет собой красное твердое вещество. Цианоплатиниты калия или бария используются при изготовлении флуоресцирующих экранов для рентгенографии.

В. Амальгамы драгоценных металлов

Это сплавы драгоценных металлов с ртутью. Амальгамы золота или серебра, наиболее известные представители таких продуктов, используются в качестве промежуточных продуктов при получении этих драгоценных металлов.

В данную товарную позицию включаются амальгамы, содержащие как драгоценные металлы, так и недрагоценные металлы (например, некоторые амальгамы, использующиеся в стоматологии); но в данную товарную позицию не включаются амальгамы целиком из недрагоценного металла (товарная позиция 2851).

2844 Элементы химические радиоактивные и изотопы радиоактивные (включая делящиеся или воспроизводящиеся химические элементы и изотопы) и их соединения; смеси и остатки, содержащие эти продукты:
2844 10- уран природный и его соединения; сплавы, дисперсии (включая металлокерамику), продукты керамические и смеси, содержащие природный уран или соединения природного урана
2844 20- уран, обогащенный ураном-235, и его соединения; плутоний и его соединения; сплавы, дисперсии (включая металлокерамику), продукты керамические и смеси, содержащие уран, обогащенный ураном-235, плутоний или соединения этих продуктов
2844 30- уран, обедненный ураном-235, и его соединения; торий и его соединения; сплавы, дисперсии (включая металлокерамику), продукты керамические и смеси, содержащие уран, обедненный ураном-235, торий или соединения этих продуктов
2844 40- элементы радиоактивные, изотопы и соединения, кроме указанных в субпозиции 2844 10, 2844 20 или 2844 30; сплавы, дисперсии (включая металлокерамику), продукты керамические и смеси, содержащие эти элементы, изотопы или соединения; остатки радиоактивные
2844 50- отработанные (облученные) тепловыделяющие элементы (твэлы) ядерных реакторов

I. Изотопы

Ядра элемента, определяемые его атомным номером, всегда содержат одно и то же число протонов, но они имеют различное число нейтронов и, следовательно, имеют различную массу (различное массовое число).

Нуклиды, которые отличаются только массовыми числами, а не атомным номером, называются изотопами элемента. Например, имеются несколько нуклидов с одинаковым атомным номером 92, которые называются ураном, но их массовые числа меняются от 227 до 240; они обозначаются, например, как уран-233, уран-235, уран-238 и т.п. Аналогично водород-1, водород-2, или дейтерий (включаемый в товарную позицию 2845), и водород-3, или тритий, являются изотопами водорода.

Важным фактором в химическом поведении элемента является величина положительного заряда ядра (число протонов); оно определяет число орбитальных электронов, которые существенно влияют на химические свойства.

Поэтому различные изотопы элемента, ядра которых имеют одинаковый электрический заряд, но различные массы, будут иметь одинаковые химические свойства, но их физические свойства будут меняться от одного изотопа к другому.

Химические элементы состоят или из одного нуклида (моноизотопные элементы) или из смеси двух или более изотопов в известных неизменных соотношениях. Например, природный хлор в свободном и в связанном состоянии всегда состоит из смеси 75,4% хлора-35 и 24,6% хлора-37 (что дает атомную массу 35,457).

Если элемент состоит из смеси изотопов, его составляющие части можно разделить, например, диффузией через пористые колонки, электромагнитной сепарацией или фракционным электролизом. Изотопы также можно получить при бомбардировке природного элемента нейтронами или заряженными частицами с высокой кинетической энергией.

В соответствии с примечанием 6 к данной группе и товарным позициям 2844 и 2845 термин "изотопы" означает не только изотопы в их чистом состоянии, но также и химические элементы, природный изотопный состав которых искусственно модифицирован обогащением элементов некоторыми их изотопами (это то же самое, что и обеднение элементов некоторыми другими изотопами) или превращением в ходе ядерных реакций некоторых изотопов в другие, искусственные изотопы. Например, хлор с атомной массой 35,30, полученный обогащением элемента изотопом хлора-35 до содержания последнего 85% (и, следовательно, обеднением изотопом хлора-37 до его содержания 15%), рассматривается практически как изотоп.

Следует отметить, что элементы, находящиеся в природе только в моноизотопном состоянии, например, бериллий-9, фтор-19, алюминий-27, фосфор-31, марганец-55 и т.п., не следует рассматривать как изотопы, и они должны классифицироваться в свободном или связанном состоянии в соответствии с этим состоянием в более специфических товарных позициях, относящихся к химическим элементам или их соединениям.

Однако радиоактивные изотопы этих элементов, полученные искусственно (например, Be-10, F-18, Al-29, P-32, Mn-54), следует рассматривать как изотопы.

Некоторые искусственно полученные химические элементы (обычно с атомным номером выше 92 или трансурановые элементы) действительно не имеют фиксированного изотопного состава, но этот состав изменяется в соответствии с методом получения такого элемента. В этих случаях невозможно провести различие между химическим элементом и его изотопами в соответствии с примечанием 6.

В данную товарную позицию включаются только те изотопы, которые обладают свойством радиоактивности (описано ниже), а стабильные изотопы, однако, включаются в товарную позицию 2845.

II. Радиоактивность

Некоторые нуклиды, имеющие нестабильные ядра, независимо от того, находятся они в свободном состоянии или в виде соединений, испускают сложное излучение, производящее химические или физические эффекты, такие как:

1) ионизация газов;

2) флуоресценция;

3) потемнение фотографических пластинок.

Эти эффекты позволяют обнаружить такое излучение и замерить его интенсивность, используя, например, счетчики Гейгера - Мюллера, пропорциональные счетчики, ионизационные камеры, камеры Вильсона, пузырьковые счетчики, сцинтилляционные счетчики и чувствительные пленки или пластинки.

Это и есть явление радиоактивности; химические элементы, изотопы, соединения и вообще вещества, обнаруживающие самопроизвольное излучение, называют радиоактивными.

III. Радиоактивные химические элементы, радиоактивные изотопы и их соединения; смеси и остатки, содержащие эти продукты

А. Радиоактивные элементы.

В данную товарную позицию включаются радиоактивные химические элементы, упомянутые в примечании 6а к данной группе, а именно: технеций, прометий, полоний и все элементы с более высоким атомным номером, такие как астат, радон, франций, радий, актиний, торий, протактиний, уран, нептуний, плутоний, америций, кюрий, берклий, калифорний, эйнштейний, фермий, менделевий, нобелий и лоуренсий.

Эти элементы обычно состоят из нескольких изотопов, которые все являются радиоактивными.

Однако имеются элементы, состоящие из смеси стабильных и радиоактивных изотопов, такие как калий, рубидий, самарий и лютеций (товарная позиция 2805), которые вследствие того, что радиоактивные изотопы имеют низкий уровень радиоактивности и составляют относительно небольшой процент в составе смеси, могут рассматриваться как практически стабильные и, таким образом, не включаются в данную товарную позицию.

Однако те же самые элементы (калий, рубидий, самарий, лютеций), если они обогащены радиоактивными изотопами (К-40, Rb-87, Sm-147, Lu-176, соответственно), следует рассматривать как радиоактивные изотопы данной товарной позиции.

Б. Радиоактивные изотопы.

К уже упомянутым природным радиоактивным изотопам калия-40, рубидия-87, самария-147 и лютеция-176 могут быть добавлены уран-235 и уран-238, которые ниже более детально рассматриваются в разделе IV, и некоторые изотопы таллия, свинца, висмута, полония, радия, актиния или тория, которые часто известны под названиями, отличающимися от названий соответствующих элементов. Эти названия скорее связаны с названием того элемента, из которого они получились при радиоактивном превращении. Таким образом, висмут-210 называется радием Е, полоний-212 называется торием С' и актиний-228 называется мезоторием II.

Химические элементы, которые обычно стабильны, тем не менее могут становиться радиоактивными после их бомбардировки частицами, выходящими из ускорителя частиц (циклотрон, синхротрон) и имеющими очень большую кинетическую энергию (протоны, дейтроны), или после поглощения нейтронов в ядерном реакторе.

Трансформированные таким образом элементы называют искусственными радиоактивными изотопами. На сегодня их известно около 500, из них около 200 уже используются в практических целях. Кроме урана-233 и изотопов плутония, которые будут рассмотрены ниже, наиболее важны следующие: водород-3 (тритий), углерод-14, натрий-24, фосфор-32, сера-35, калий-42, кальций-45, хром-51, железо-59, кобальт-60, криптон-85, стронций-90, иттрий-90, палладий-109, йод-131 и -132, ксенон-133, цезий-137, туллий-170, иридий-192, золото-198 и полоний-210.

Радиоактивные химические элементы и радиоактивные изотопы самопроизвольно переходят в более стабильные элементы или изотопы.

Время, требуемое для того, чтобы количество данного радиоактивного изотопа уменьшилось вдвое по сравнению с исходным, называется периодом полураспада или скорости превращения данного изотопа. Это время изменяется от долей секунды для некоторых коротко живущих радиоактивных изотопов (0,3 x 1E(-6) для тория С') до миллиардов лет (1,5 x 1E11 лет для самария-147) и представляет собой удобный исходный критерий статистической нестабильности рассматриваемых ядер.

Радиоактивные химические элементы и изотопы включаются в данную товарную позицию, даже если они смешаны с другими радиоактивными соединениями или нерадиоактивными материалами (например, с отработанными облученными мишенями и радиоактивным сырьем), при условии, что удельная радиоактивность продукта больше, чем 74 Бк/г (0,002 мкКИ/г).

В. Радиоактивные соединения; смеси и остатки, содержащие радиоактивные вещества.

Радиоактивные химические элементы и изотопы данной товарной позиции часто используются в форме соединений или продуктов, которые "мечены" (то есть содержат молекулы с одним или более радиоактивными атомами). Такие соединения также включаются в данную товарную позицию, даже если они растворены, диспергированы, естественно или искусственно смешаны с другими радиоактивными или нерадиоактивными материалами. Эти элементы и изотопы также включаются в данную товарную позицию, будучи в форме сплавов, дисперсий или металлокерамики.

Неорганические или органические соединения, химически или другим образом полученные из радиоактивных химических элементов или радиоактивных изотопов, и их растворы включаются в данную товарную позицию, даже если удельная радиоактивность этих соединений или растворов ниже 74 Бк/г (0,002 мкКИ/г); сплавы, дисперсии (включая металлокерамику), керамические продукты и смеси, содержащие радиоактивные вещества (элементы, изотопы или их соединения), включаются в данную товарную позицию, если их удельная радиоактивность больше, чем 74 Бк/г (0,002 мкКИ/г). Радиоактивные элементы и изотопы, которые очень редко используются в свободном состоянии, применяются в промышленности в виде химических соединений или сплавов. Не считая соединений, делящихся и воспроизводящих химические элементы и изотопы, которые будут рассмотрены ниже, в разделе IV с учетом их характеристик и важности, наиболее значимые радиоактивные соединения следующие:

1. Соли радия (хлорид, бромид, сульфат и т.п.), используемые в качестве источника излучения для лечения раковых заболеваний или для некоторых физических опытов.

2. Соединения радиоактивных изотопов, упомянутых выше, в пункте III Б.

Искусственные радиоактивные изотопы и их соединения используются:

а) в промышленности, например, для радиографии металлов, для измерения толщины листовых металлов, пластин и т.п.; для измерения уровня жидкости в резервуарах, недоступного для других методов; для ускорения вулканизации; для инициирования полимеризации или привитой сополимеризации некоторых органических соединений; для производства люминесцентных красок (смешанных, например, с сульфидом цинка); для часовых циферблатов, инструментов и т.п.;

б) в медицине, например, для диагностики или лечения некоторых заболеваний (кобальт-60, йод-131, золото-198, фосфор-32 и т.п.);

в) в сельском хозяйстве, например, для стерилизации сельскохозяйственных продуктов, для предотвращения прорастания семян, для исследования применения удобрений или поглощения их растениями, для создания генетических мутаций с целью улучшения породы и т.п. (кобальт-60, цезий-137, фосфор-32 и т.п.);

г) в биологии, например, для исследования функционирования или развития некоторых животных или растений (тритий, углерод-14, натрий-24, фосфор-32, сера-35, калий-42, кальций-45, железо-59, стронций-90, йод-131 и т.п.);

д) в физических или химических исследованиях.

Радиоактивные изотопы и их соединения обычно поставляются в виде порошков, растворов, нитей, игл или пластинок. Они содержатся в стеклянных ампулах, в полых платиновых капиллярах, в трубках из нержавеющей стали и т.п., помещенных в не пропускающий радиоактивное излучение металлический наружный контейнер (обычно из свинца), выбор толщины которого зависит от степени радиоактивности изотопа. В соответствии с некоторыми международными соглашениями на контейнерах должен быть специальный знак, дающий сведения об изотопах, содержащихся в контейнерах, и степени их радиоактивности.

Смеси могут включать некоторые источники нейтронов, образованные объединением (в смеси, сплаве, соединении и т.п.) радиоактивного элемента или изотопа (радия, радона, сурьмы-124, америция-241 и т.п.) с другим элементом (бериллием, фтором и т.п.) таким образом, чтобы получить (гамма, n)- или (альфа, n)-реакцию (введение гамма - фотона или альфа - частицы, соответственно, и испускание нейтрона).

Однако все сборные источники нейтронов, готовые для введения в ядерный реактор для инициирования цепной реакции расщепления, также должны рассматриваться как компоненты реакторов, и, следовательно, их надо включать в товарную позицию 8401.

Микросферические частицы ядерного топлива, покрытые слоями углерода или карбида кремния и предназначенные для включения в сферические или призматические топливные элементы, включаются в данную товарную позицию.

В данную товарную позицию также включаются продукты, используемые как люминофоры, в которых имеется небольшое количество радиоактивных веществ, добавленных с целью придания продуктам самолюминесцентных свойств, при условии, что общая удельная радиоактивность продукта больше, чем 74 Бк/г (0,002 мкКИ/г).

Из радиоактивных остатков наиболее важные, с точки зрения вторичного использования, следующие:

1. Облученная или содержащая тритий тяжелая вода: после пребывания в течение различного времени в реакторе часть дейтерия в тяжелой воде превращается при поглощении нейтронов в тритий и, таким образом, тяжелая вода становится радиоактивной.

2. Отработанные (облученные) тепловыделяющие элементы (твэлы), обычно с очень высоким уровнем радиоактивности, главным образом используются для извлечения делящихся или воспроизводящих материалов, содержащихся в этих элементах (см. раздел IV ниже).

IV. Делящиеся и воспроизводящие химические элементы и изотопы и их соединения; смеси и остатки, содержащие эти продукты

А. Делящиеся и воспроизводящие химические элементы и изотопы.

Некоторые из радиоактивных химических элементов и изотопов, упомянутых выше в разделе III, имеют большую атомную массу, например, торий, уран, плутоний и америций; ядра атомов этих элементов имеют особенно сложную структуру. Такие ядра при воздействии субатомных частиц (нейтронов, протонов, дейтронов, тритонов, альфа - частиц и т.п.) могут поглощать эти частицы, таким образом увеличивая степень своей нестабильности до величины, когда они становятся сами способными расщепляться на два ядра с близкой по величине массой (или более редко на три или четыре фрагмента). Это расщепление освобождает значительное количество энергии и сопровождается выходом вторичных нейтронов. Этот процесс известен как процесс расщепления или деления ядра.

Только в очень редких случаях расщепление происходит спонтанно или под действием фотонов.

Вторичные нейтроны, выделяющиеся во время расщепления, могут вызвать вторичное расщепление, которое в свою очередь также создает вторичные нейтроны, и т.д. Повторение этого процесса многократно и дает цепную реакцию.

Вероятность расщепления обычно очень высока для некоторых нуклидов (U-233, U-235, Pu-239), если используются медленные нейтроны, то есть нейтроны со средней скоростью примерно 2200 м/с (или с энергией 1/40 эВ). Поскольку эта скорость соответствует примерно скорости молекул жидкости (тепловое движение молекул), медленные нейтроны иногда называют тепловыми нейтронами.

В настоящее время расщепление, вызываемое тепловыми нейтронами, наиболее часто используется в ядерных реакторах.

По этой причине термин "расщепление" обычно используется для описания изотопов, которые подвергаются расщеплению тепловыми нейтронами, в частности, урана-233, урана-235, плутония-239 и химических элементов, которые содержат их, в частности, урана и плутония.

Другие нуклиды, такие как уран-238 и торий-232, расщепляются только под действием быстрых нейтронов, и обычно эти изотопы считаются воспроизводящими, а не делящимися. Воспроизводимость объясняется тем, что эти нуклиды могут поглощать медленные нейтроны, давая, таким образом, возможность образования плутония-239 или урана-233, соответственно, которые уже являются делящимися изотопами.

Поскольку в процессе расщепления выделяется очень большое количество энергии вторичных нейтронов (примерно 2 млн. эВ), в тепловых ядерных реакторах (с медленными нейтронами) эти нейтроны должны быть замедлены в случае начала цепной реакции. Это может быть достигнуто с помощью замедлителей, то есть продуктов с малой атомной массой (таких как вода, тяжелая вода, некоторые углеводороды, графит, бериллий и т.п.), которые, хотя и поглощают часть энергии нейтронов при последующих ударах, но не поглощают нейтроны или поглощают их в очень незначительной степени.

Для того чтобы запустить и поддерживать цепную реакцию, среднее число вторичных нейтронов, образующихся при расщеплении, должно быть больше, чем требуется для компенсации потери нейтронов при их захвате другими атомами, не приводящем к расщеплению.

Делящиеся и воспроизводящие химические элементы указаны ниже:

1. Природный уран.

Уран в природном состоянии состоит из трех изотопов: урана-238, который составляет 99,28% всей массы, урана-235, который составляет 0,71%, и незначительного количества (около 0,006%) урана-234. Следовательно, природный уран можно считать как делящимся элементом (благодаря содержанию урана-235), так и воспроизводящим (благодаря содержанию урана-238).

В основном уран выделяют из урановой смолки, уранинита, отунита, браннерита, карнотита или торбернита. Он также извлекается из других вторичных ресурсов, таких как отходы производства суперфосфата или остатки золотодобывающих производств. Обычным процессом является восстановление тетрафторида с помощью кальция или магния или электролизом.

Уран - слаборадиоактивный элемент, очень тяжелый (относительная плотность 19) и твердый. Он имеет блестящую серебристо - серую поверхность, но темнеет в контакте с кислородом воздуха, образуя оксиды. В порошкообразном виде он окисляется и быстро возгорается при контакте с воздухом.

Уран обычно продается в форме чушек, пригодных для полировки, опиливания, прокатывания и т.п. (чтобы получить бруски и стержни, трубы, листы, проволоку и т.п.).

2. Торий.

Поскольку торит и орангит, весьма богатые торием, встречаются в природе очень редко, торий в основном получают из монацита, который содержит также редкоземельные металлы.

Неочищенный торий представляет собой крайне пирофорный серый порошок. Его получают электролизом фторидов или восстановлением фторидов, хлоридов или оксидов. Полученный металл очищают и спекают в инертной атмосфере и превращают в тяжелые серо - стального цвета чушки (относительная плотность 11,5); они довольно тверды (хотя мягче, чем уран) и быстро окисляются на воздухе.

Эти чушки прокатывают, экструдируют или протягивают с получением листов, стержней, труб, проволоки и т.п. Природный торий состоит из изотопа тория-232.

Торий и некоторые сплавы тория используются, главным образом, как воспроизводящие материалы в ядерных реакторах. Торий - магниевые и торий - вольфрамовые сплавы, однако, используются в самолетостроении или в производстве термоионных устройств.

Изделия или части изделий, выполненные из тория, разделов XVI - XIX не включаются в данную товарную позицию.

3. Плутоний.

Промышленный плутоний получают облучением урана-238 в ядерных реакторах.

Это очень тяжелый (относительная плотность 19,8) радиоактивный и сильно токсичный элемент. Он аналогичен урану по внешнему виду и по окисляемости.

Плутоний в промышленности поставляется в таком же виде, как и обогащенный уран, и требует величайшей осторожности при обращении.

Делящиеся изотопы включают:

1) уран-233; его получают в ядерных реакторах из тория-232, который превращается последовательно в торий-233, протактиний-233 и уран-233;

2) уран-235 - это только делящийся изотоп урана, который встречается в природе, причем присутствие его в природном уране составляет 0,71%.

Чтобы получить уран, обогащенный ураном-235, и уран, обедненный ураном-235 (то есть обогащенный ураном-238), гексафторид урана подвергают изотопному разделению с помощью электромагнитной, центробежной или газодиффузионной сепарации;

3) плутоний-239; его получают в ядерных реакторах из урана-238, который последовательно превращается в уран-239, нептуний-239 и плутоний-239.

Следует отметить, что имеются некоторые изотопы трансплутониевых элементов, такие как калифорний-252, америций-241, кюрий-242 и кюрий-244, которые могут расщепляться (спонтанно или неспонтанно) и могут быть использованы как интенсивный источник нейтронов.

Из воспроизводящих изотопов, кроме тория-232, следует отметить обедненный уран (то есть обедненный ураном-235 и, соответственно, обогащенный ураном-238). Этот металл является побочным продуктом производства урана, обогащенного ураном-235. Благодаря его гораздо меньшей стоимости и доступности в больших количествах, он заменяет природный уран, в частности, как воспроизводящий материал, как защитный экран против радиации, как тяжелый металл для производства маховиков или в изготовлении абсорбирующих составов (газопоглотителей), используемых для очистки некоторых газов.

Изделия или части изделий, сделанные из урана, обедненного ураном-235, разделов XVI - XIX не включаются в данную товарную позицию.

Б. Соединения делящихся и воспроизводящих химических элементов или изотопов.

В данную товарную позицию включаются, в частности, следующие соединения:

1. урана:

а) оксиды UO2, U3O8 и UO3,

б) фториды UF4 и UF6 (последний сублимируется при 56 град. С),

в) карбиды UC и UC2,

г) уранаты Na2U2O7 и (NH4)2U2O7,

д) уранилнитрат UO2(NO3)2-6H2O,

е) уранилсульфат UО2SO4-3H2O;

2) плутония:

а) тетрафторид PuF4,

б) диоксид PuO2,

в) нитрат PuO2(NO3)2,

г) карбиды PuC и Pu2C3,

д) нитрид PuN.

Соединения урана или плутония находят применение, главным образом, в ядерной промышленности или как промежуточные, или как конечные продукты. Гексафторид урана обычно поставляется в герметичных контейнерах; он весьма токсичен и, следовательно, должен требовать очень осторожного обращения;

3) тория:

а) оксид и гидроксид. Оксид тория (ThO2) - беловато - желтый порошок, не растворимый в воде. Гидроксид тория (Th(OH)4) - гидратированный оксид тория. Оба получают из монацита. Они используются в производстве газокалильных сеток, как огнеупоры или как катализаторы (синтез ацетона). Оксид используется как воспроизводящий материал в ядерных реакторах;

б) неорганические соли. Эти соли обычно белого цвета. Важнейшие из них следующие:

i) нитрат тория, находящийся в более или менее гидратированном состоянии в виде кристаллов или порошка (кальцинированный нитрат). Используется для приготовления люминесцентных красок. Смешанный с нитратом церия используется для пропитки газокалильных сеток;

ii) сульфат тория, кристаллический порошок, растворимый в холодной воде; водородсульфат тория и двойные сульфаты щелочных металлов;

iii) хлорид тория (ТhСl4), безводный или гидратированный, и оксид хлорид;

iv) нитрид тория и карбид тория. Используются как огнеупорные материалы, как абразивы или воспроизводящие материалы в ядерных реакторах;

в) органические соединения. Наиболее известные органические соединения тория - формиат, ацетат, тартрат и бензоат, все используются в медицине.

В. Сплавы, дисперсии (включая металлокерамику), керамические продукты, смеси и остатки, содержащие делящиеся или воспроизводящие элементы, или изотопы, или их неорганические или органические соединения.

Основные продукты, относящиеся к данной категории, следующие:

1. Сплавы урана или плутония с алюминием, хромом, цирконием, молибденом, титаном, ниобием или ванадием. Также имеются урано - плутониевые и железо - урановые сплавы.

2. Дисперсии диоксида урана (UO2) или карбида урана (UC) (смешанные или не смешанные с диоксидом тория или карбидом тория) в графите или полиэтилене.

3. Металлокерамика, состоящая из различных металлов (например, коррозионностойкой стали, или нержавеющей стали) вместе с диоксидом урана (UO2), диоксидом плутония (PuO2), карбидом урана (UC) или карбидом плутония (PuC) (или тех же соединений, смешанных с оксидом тория или карбидом тория).

Эти продукты в виде брусков, пластин, шариков, кусков, порошков и т.п. используются для производства тепловыделяющих элементов или иногда непосредственно в реакторах.

Бруски, пластины и шарики, находящиеся в упаковке и снабженные специальными инструкциями по обращению с ними, включаются в товарную позицию 8401.

4. Отработанные или облученные тепловыделяющие элементы (твэлы), то есть те, которые после более или менее продолжительного использования следует заменить (например, из-за накопления продуктов расщепления, препятствующего цепной реакции, или из-за разрушения оболочки). После достаточно продолжительного хранения под толстым слоем воды с целью их охлаждения и снижения радиоактивности эти тепловыделяющие элементы транспортируют в свинцовых контейнерах на специализированные установки, предназначенные для извлечения оставшегося расщепляющегося материала, образующегося в результате превращения или из воспроизводящих элементов (которые обычно содержатся в тепловыделяющих элементах), или продуктов деления.

2845 Изотопы, кроме изотопов товарной позиции 2844; соединения неорганические или органические этих изотопов, определенного или неопределенного химического состава:
2845 10- тяжелая вода (оксид дейтерия)
2845 90- прочие

Определение термина "изотопы" - см. пункт I пояснений к товарной позиции 2844.

В данную товарную позицию включаются стабильные изотопы, то есть нерадиоактивные изотопы и их неорганические или органические соединения, определенного или неопределенного химического состава.

В данную товарную позицию включаются следующие изотопы и их соединения:

1. Тяжелый водород, или дейтерий. Он извлекается из обычного водорода, в котором его содержание составляет примерно 1/6500 часть.

2. Тяжелая вода, или оксид дейтерия. Встречается в обычной воде, где ее содержание составляет 1/6500 часть. Обычно ее получают как остаток электролиза воды. Используется как источник дейтерия и в ядерных реакторах для замедления нейтронов, которые расщепляют атомы урана.

3. Прочие соединения, содержащие дейтерий, например, тяжелый ацетилен, тяжелый метан, тяжелые уксусные кислоты и тяжелый парафин.

4. Изотопы лития, известные как литий-6 или литий-7, и их соединения.

5. Изотоп углерода, известный как углерод-13, и его соединения.

2846 Соединения, неорганические или органические, редкоземельных металлов, иттрия или скандия или смесей этих металлов:
2846 10- соединения церия
2846 90- прочие

В данную товарную позицию включаются неорганические или органические соединения иттрия, скандия или редкоземельных металлов товарной позиции 2805 (лантан, церий, празеодим, неодим, самарий, европий, гадолиний, тербий, диспрозий, гольмий, эрбий, тулий, иттербий, лютеций). В данную товарную позицию также включаются соединения, полученные непосредственно химической обработкой из смесей элементов. Это означает, что в данную товарную позицию включаются смеси оксидов или гидроксидов этих элементов или смеси солей, имеющих один и тот же анион (например, хлориды редкоземельных металлов), но не смеси солей, имеющих различные анионы, независимо от того, имеются или нет у них те же самые катионы. В данную товарную позицию не включаются, например, смеси нитратов европия и самария с оксалатами и смеси хлорида и сульфата церия, поскольку такие смеси не относятся к соединениям, полученным непосредственно из смеси элементов, но являются смесями соединений, которые можно считать приготовленными специально и которые в соответствии с этим включаются в товарную позицию 3824.

В данную товарную позицию также включаются двойные или комплексные соли этих металлов с другими металлами.

Соединения данной товарной позиции включают:

1. Соединения церия:

а) оксиды и гидроксиды. Оксид четырехвалентного церия, белый порошок, не растворимый в воде, который получают из нитрата церия; используется в качестве глушителя в керамике, для окраски стекла, в приготовлении углерода для дуговых ламп и как катализатор в производстве азотной кислоты и аммиака. Имеется также и гидроксид четырехвалентного церия. Оксид и гидроксид трехвалентного церия не очень стабильны;

б) соли церия. Нитрат трехвалентного церия (Ce(NO3)3) используется в производстве газокалильных сеток. Нитрат аммония церия (IV) представляет собой красные кристаллы.

Сульфаты церия (сульфат трехвалентного церия и его гидраты, гидратированный сульфат четырехвалентного церия, представляющий собой оранжево - желтые призмы, растворимые в воде) используются в фотографии как восстановители. Имеются также и двойные сульфаты церия.

Кроме хлорида трехвалентного церия (CeCl3), имеются различные другие бесцветные соли трехвалентного церия и желтые или оранжевые соли четырехвалентного церия.

Оксалат церия имеет вид порошка или желтовато - белых гидратированных кристаллов, практически не растворимых в воде; используется для выделения металлов цериевой группы или в медицине.

2. Прочие соединения редкоземельных металлов. Оксид иттрия, оксид тербия, смеси оксидов иттербия и оксидов других редкоземельных металлов в торговле имеются в достаточно чистом виде. В данную товарную позицию включаются смеси солей, полученные непосредственно из таких смесей оксидов.

Оксиды европия, самария и т.п. используются в ядерных реакторах для поглощения медленных нейтронов.

В данную товарную позицию не включаются:

а) природные соединения редкоземельных металлов, например, ксенотим (комплексный фосфат), гадолинит или иттербит и церит (комплексные силикаты) (товарная позиция 2530) и монацит (фосфат тория и редкоземельных металлов) (товарная позиция 2612);

б) соли и прочие соединения, неорганические или органические, прометия (товарная позиция 2844).

2847 Пероксид водорода, отвержденный или не отвержденный мочевиной

Пероксид водорода (H2O2) получают электролитическим окислением серной кислоты с последующей дистилляцией или обработкой пероксида натрия или бария, или пероксосульфата калия кислотой. Это бесцветная жидкость, по виду похожая на обычную воду. Она может иметь консистенцию сиропа и в концентрированном виде раздражает кожу. Транспортируют ее в бутылях для кислот.

Пероксид водорода очень нестабилен в щелочной среде, особенно при нагревании или на свету. Он почти всегда содержит небольшие количества стабилизаторов (борную или лимонную кислоту и т.п.) для предотвращения разложения; такие смеси включаются в данную товарную позицию.

В данную товарную позицию также включается пероксид водорода, отвержденный мочевиной, стабилизированный или нестабилизированный.

Пероксид водорода используется для отбеливания текстильных материалов, кожи, соломы, губки, слоновой кости, волос и т.п. Он также используется для кубового крашения, очистки воды, реставрации старых картин, в фотографии и медицине (как антисептик и гемостатическое средство).

Расфасованный в виде дозированных лекарственных форм или в упаковки для розничной продажи пероксид водорода включается в товарную позицию 3004.

2848 Фосфиды, определенного или неопределенного химического состава, за исключением феррофосфора

Фосфиды представляют собой соединения фосфора с другими элементами.

Наиболее важные фосфиды, включаемые в данную товарную позицию, получают при прямом взаимодействии составляющих их элементов; они включают:

1. Фосфид меди (купрофосфор, фосфористая медь). Этот продукт получают в отражательной печи или в тигле. Обычно это желто - серая масса или небольшие очень хрупкие слитки кристаллической структуры. В данную товарную позицию включаются фосфид меди и конструкционные сплавы, только если они содержат более 15 мас.% фосфора. Сплавы с более низким содержанием фосфора включаются обычно в группу 74. Фосфид меди является очень хорошим раскислителем меди, увеличивает твердость этого металла; он улучшает текучесть расплавленного металла и используется в производстве фосфористой бронзы.

2. Фосфид кальция (Ca3P2). Небольшие каштанового цвета кристаллы или серая гранулированная масса, которая при контакте с водой выделяет самопроизвольно воспламеняющиеся фосфиды водорода. Используется с карбидом кальция для устройства навигационных сигналов (самозажигающиеся бакены).

3. Фосфид цинка (Zn3P2). Серый ядовитый порошок со стеклообразной структурой; выделяет фосфин, или фосфид водорода, и разлагается во влажном воздухе. Используется для уничтожения грызунов и саранчи, а также в медицине (вместо фосфора).

4. Фосфид олова. Очень хрупкое серебристо - белое твердое вещество. Используется в производстве сплавов.

5. Прочие фосфиды, например, фосфиды водорода (твердый, жидкий, газообразный) и фосфиды мышьяка, бора, кремния, бария, кадмия.

В данную товарную позицию не включаются:

а) соединения фосфора с кислородом (товарная позиция 2809), с галогенами (товарная позиция 2812) или с серой (товарная позиция 2813);

б) фосфиды платины и других драгоценных металлов (товарная позиция 2843);

в) феррофосфор (фосфид железа) (товарная позиция 7202).

2849 Карбиды, определенного или неопределенного химического состава:
2849 10- кальция
2849 20- кремния
2849 90- прочие

В данную товарную позицию включаются:

А. Бинарные карбиды, которые представляют собой соединения углерода с другими элементами, более электроположительными, чем углерод. Соединения, известные как ацетилиды, или ацетилениды, также включаются в данную товарную позицию.

Наиболее хорошо известны бинарные карбиды:

1. Карбид кальция (CaC2). В чистом виде - прозрачное бесцветное твердое вещество, в присутствии примесей - непрозрачное, серое. Разлагается водой с выделением ацетилена; используется для производства ацетилена или цианамида кальция.

2. Карбид кремния (SiC) (силицид углерода). Получают обработкой углерода и кремния в электрической печи. Черные кристаллы, куски или бесформенная масса, раздробленная или в зернах. Плавится с большим трудом; химически стойкий реагент; обладает некоторой степенью рефракции, твердый, как алмаз, но гораздо более хрупкий. Применяется как абразив и как огнеупорный продукт; в смеси с графитом - для футеровки печей или высокотемпературных топок. Также используется для производства кремния. В данную товарную позицию не включается карбид кремния в форме порошка или зерен на тканевой, бумажной, картонной или иной основе (товарная позиция 6805) или в форме шлифовальных кругов, точильных камней для ручной заточки или полировки и т.п. (товарная позиция 6804).

3. Карбид бора (бороуглерод). Получают обработкой графита и борной кислоты в электрической печи; черные блестящие твердые кристаллы. Используется как абразив, для бурения горных пород, в производстве инструментов или электродов.

4. Карбид алюминия (Al4C3). Получают в электрических печах при нагревании оксида алюминия с коксом; прозрачные желтые кристаллы или хлопья. Разлагается водой с выделением метана.

5. Карбид циркония (ZrC). Получают в электрических печах из оксида циркония и сажи; разлагается при контакте с воздухом или водой. Используется в производстве нитей для ламп.

6. Карбид бария (BaC2). Обычно получают в электрических печах; коричневатая кристаллическая масса. Разлагается водой с выделением ацетилена.

7. Карбиды вольфрама. Получают в электрических печах из металлического порошка или оксида вольфрама и сажи; порошок не разлагается водой, имеет очень высокую химическую стабильность. Имеет высокую температуру плавления; очень твердый и стойкий к нагреванию. Его проводимость аналогична проводимости металлов, и он легко взаимодействует с черными металлами. Используется в твердых спекшихся композициях, например, в агломератах для производства наконечников режущих инструментов (обычно вместе со связующим веществом, таким как кобальт или никель).

8. Прочие карбиды. Карбиды молибдена, ванадия, титана, тантала или ниобия получают из металлических порошков или оксидов этих металлов и сажи в электрических печах; используются для тех же целей, что и карбид вольфрама. Имеются также карбиды хрома и марганца.

Б. Карбиды, состоящие из углерода в сочетании более чем с одним металлом, например, (Ti, W)C.

В. Соединения, состоящие из одного или более металлов в сочетании с углеродом и другим неметаллическим элементом, например, борокарбид алюминия, карбонитрид циркония, карбонитрид титана.

Соотношения элементов в некоторых из этих соединений могут не соответствовать стехиометрическим. Однако механические смеси не включаются.

В данную товарную позицию также не включаются:

а) бинарные соединения углерода со следующими элементами: кислородом (товарная позиция 2811), галогенами (товарная позиция 2812 или 2903), серой (товарная позиция 2813), драгоценными металлами (товарная позиция 2843), азотом (товарная позиция 2851), водородом (товарная позиция 2901);

б) смеси карбидов металлов, неагломерированные, но приготовленные для изготовления пластин, брусков, наконечников и т.п., например, для инструмента (товарная позиция 3824);

в) сплавы железа с углеродом группы 72, такие как белый передельный чугун, независимо от их состава;

г) смеси агломерированных карбидов металлов в виде пластин, брусков, наконечников и аналогичных изделий для инструмента (товарная позиция 8209).

2850 Гидриды, нитриды, азиды, силициды и бориды, определенного или неопределенного химического состава, кроме соединений, являющихся карбидами товарной позиции 2849

Четыре группы соединений включаются в данную товарную позицию, причем каждое соединение содержит два или более элементов, одним из которых является водород, азот, кремний или бор, а другие являются металлами или неметаллами.

А. Гидриды

Наиболее важный гидрид - это гидрид кальция (СаН2) (гидролит), получаемый прямым взаимодействием его элементов; белая масса с кристаллическим изломом, разлагающаяся на холоде при контакте с водой с выделением водорода. Является восстановителем, используемым для производства спекшегося хрома из хлорида хрома.

Имеются также гидриды мышьяка, кремния, бора (включая борогидрид натрия), лития (и алюминия лития), натрия, калия, стронция, сурьмы, никеля, титана, циркония, олова, свинца и т.п.

В данную товарную позицию не включаются соединения водорода со следующими элементами: кислородом (товарные позиции 2201, 2845, 2847 и 2851), азотом (товарные позиции 2811, 2814 и 2825), фосфором (товарная позиция 2848), углеродом (товарная позиция 2901) и некоторыми другими неметаллами (товарные позиции 2806 и 2811). Гидриды палладия и других драгоценных металлов включаются в товарную позицию 2843.

Б. Нитриды

1. Нитриды неметаллов. Нитрид бора (BN) - легкий белый порошок, очень тугоплавкий. Тепло- и электроизоляционный материал; используется для футеровки электрических печей или для производства тиглей. Нитрид кремния (Si3N4) - серо - белый порошок.

2. Нитриды металлов. Нитриды алюминия, титана, циркония, гафния, ванадия, тантала или ниобия получают или нагреванием чистого металла в атмосфере азота при температуре порядка 1100 град. С или 1200 град. С, или нагреванием при более высокой температуре смеси оксида металла и углерода в токе азота или аммиака.

В данную товарную позицию не включаются соединения азота со следующими элементами: кислородом (товарная позиция 2811), галогенами (товарная позиция 2812), серой (товарная позиция 2813), водородом (товарная позиция 2814), углеродом (товарная позиция 2851). Нитриды серебра и других драгоценных металлов включаются в товарную позицию 2843, нитриды тория и урана - в товарную позицию 2844.

В. Азиды

Азиды металлов можно рассматривать как соли азотисто - водородной кислоты (HN3).

1. Азид натрия (NaN3). Получают действием оксида диазота на амид натрия или из гидразина, этилнитрита и гидроксида натрия; бесцветные кристаллические хлопья. Растворим в воде, незначительно ухудшает свои свойства во влажной атмосфере. Сильно изменяется под воздействием диоксида углерода в воздухе. Чувствителен к удару, подобно гремучей ртути, но менее чувствителен к нагреванию, чем гремучая ртуть. Используется для приготовления инициирующих взрывчатых веществ для детонаторов.

2. Азид свинца (PbN6). Получают из азида натрия и ацетата свинца. Белый кристаллический порошок, очень чувствительный к удару, хранить следует под водой. Используется вместо гремучей ртути как взрывчатое вещество.

Г. Силициды

1. Силицид кальция. Очень твердая серая кристаллическая масса. Используется в металлургии, для получения водорода на месте, а также в производстве дымовых шашек.

2. Силициды хрома. Имеются несколько силицидов хрома; это очень твердые вещества, используемые как абразивы.

3. Силицид меди (кроме медно - кремниевых конструкционных сплавов товарной позиции 7405). Обычно в виде хрупких пластин. Восстановитель для очистки меди, облегчающий ее плавление и увеличивающий твердость и стойкость к разрушению; снижает чувствительность медных сплавов к коррозии. Также используется в производстве силиконовой бронзы или медно - никелевых сплавов.

4. Силициды магния или марганца.

В данную товарную позицию не включаются соединения кремния со следующими элементами: кислородом (товарная позиция 2811), галогенами (товарная позиция 2812), серой (товарная позиция 2813), фосфором (товарная позиция 2848). Силицид углерода (карбид кремния) включается в товарную позицию 2849, силициды платины и других драгоценных металлов - в товарную позицию 2843, ферросплавы и конструкционные сплавы, содержащие кремний, - в товарную позицию 7202 или 7405, кремний - алюминиевые сплавы - в группу 76. Относительно соединений кремния и водорода - см. выше пункт (А).

Д. Бориды

1. Борид кальция (CaB6). Получают электролизом смеси бората и хлорида кальция; темный кристаллический порошок. Сильный восстановитель, используемый в металлургии.

2. Борид алюминия. Получают в электрических печах; кристаллическая масса. Используется в производстве стекла.

3. Бориды титана, циркония, ванадия, ниобия, тантала, молибдена и вольфрама получают нагреванием смеси металлического порошка и чистого порошка бора в вакууме при температуре 1800 - 2200 град. С или обработкой превращенного в пар металла бором. Продукты реакций очень твердые и хорошо проводят электричество. Они используются для получения твердых спекшихся композиций.

4. Бориды магния, сурьмы, марганца и железа и т.п.

В данную товарную позицию не включаются соединения бора со следующими элементами: кислородом (товарная позиция 2810), галогенами (товарная позиция 2812), серой (товарная позиция 2813), драгоценными металлами (товарная позиция 2843), фосфором (товарная позиция 2848), углеродом (товарная позиция 2849). Относительно соединений с водородом, азотом или кремнием - см. выше пункты (А), (Б), (Г).

В данную товарную позицию не включаются конструкционные боро - медные сплавы (см. пояснения к товарной позиции 7405).

2851 Соединения неорганические прочие (включая дистиллированную или кондуктометрическую воду и воду аналогичной чистоты); воздух жидкий (с удалением или без удаления инертных газов); воздух сжатый; амальгамы, кроме амальгам драгоценных металлов

А. Дистиллированная или кондуктометрическая вода и вода аналогичной чистоты

В данную товарную позицию включается только дистиллированная вода, повторно дистиллированная вода или электроосмотическая вода, кондуктометрическая вода и вода аналогичной чистоты, включая воду, обработанную с помощью ионообменников.

Природная вода, даже если она фильтрованная, стерилизованная, очищенная или умягченная, не включается (товарная позиция 2201). Вода, расфасованная в виде дозированных лекарственных форм или в упаковки для розничной продажи, включается в товарную позицию 3004.

Б. Прочие неорганические соединения

В данную товарную позицию включаются также неорганические химические соединения, в другом месте не поименованные и не включенные (включая некоторые соединения углерода, перечисленные в примечании 2 к данной группе).

В данную товарную позицию включаются:

1. Циан и соединения циана с галогенами, например, цианхлорид, или хлорциан (CNCl); цианамид и его металлопроизводные (кроме цианамида кальция, товарная позиция 3102 или 3105).

2. Оксид сульфиды неметаллов (мышьяка, углерода, кремния) и сульфид хлориды неметаллов (фосфора, углерода и т.п.). Тиофосген (CSCl2) (тиокарбонилхлорид, сульфид дихлорид углерода) получают действием хлора на дисульфид углерода, жидкое вещество красного цвета, удушающее и слезоточивое, разлагается водой, используется в органических синтезах.

3. Амиды щелочных металлов. Амид натрия (NaNH2) получают действием нагретого аммиака на свинцово - натриевый сплав или пропусканием газообразного аммиака над расплавленным натрием. Розоватые или зеленоватые кристаллы, разлагаемые водой. Используются в органических синтезах, при получении азидов, цианидов и т.п.

Имеются также амиды калия и других металлов.

4. Аминохлорид ртути (НgNН2Сl). Получают действием аммиака на раствор хлорида двухвалентной ртути; белый порошок, который на свету становится сероватым или желтоватым; не растворим в воде, ядовит. Используется в пиротехнике и в медицине.

5. Йодид фосфония. Получают, например, взаимодействием фосфора, йода и воды; используется как восстановитель.

В. Жидкий и сжатый воздух

В продажу жидкий воздух поставляют в стальных или латунных баллонах с вакуумной рубашкой. Жидкий воздух может вызвать сильные ожоги и воздействует на мягкие органические материалы, делая их более хрупкими. Используется для получения кислорода, азота и редких газов путем фракционной дистилляции. Вследствие его быстрого испарения используется в лабораториях в качестве охлаждающего агента. В смеси с мелким древесным углем и другими продуктами представляет собой взрывчатый продукт, который применяют в горном деле.

В данную товарную позицию также включаются:

1) жидкий воздух, из которого удалены инертные газы;

2) сжатый воздух.

Г. Амальгамы, кроме амальгам драгоценных металлов

Ртуть образует амальгамы с различными недрагоценными металлами (щелочные металлы и щелочно - земельные металлы, цинк, кадмий, сурьма, алюминий, олово, медь, свинец, висмут и т.п.).

Амальгамы можно получать прямым взаимодействием металлов с ртутью, электролизом солей металлов с применением ртутного катода или электролизом солей ртути (в этом случае катод делается из соответствующего металла).

Амальгамы, полученные электролизом и очищенные при низкой температуре, используются при приготовлении пирофорных металлов, которые отличаются большей реакционной способностью, чем те, что получают при высокой температуре. Они также используются в металлургии драгоценных металлов.

1. Амальгамы щелочных металлов разлагают воду с выделением меньшего количества тепла, чем чистые щелочные металлы, и, следовательно, являются более активными восстановителями, чем щелочные металлы. Амальгама натрия используется при получении водорода.

2. Амальгама алюминия используется как восстановитель в органических синтезах.

3. Амальгама меди, содержащая небольшие количества олова, используется в стоматологии. Амальгамы меди представляют собой так называемые металлические цементы, размягчающиеся при нагревании, пригодные для формования и ремонта фарфоровых изделий.

4. Амальгама цинка используется в гальванических элементах для предотвращения коррозии.

5. Амальгама кадмия используется в стоматологии и в производстве вольфрамовой проволоки из спеченного металла.

6. Оловянно - сурьмяная амальгама используется для получения "бронзовых" замазок.

Амальгамы, содержащие драгоценные металлы, независимо от того, входят ли в их состав недрагоценные металлы или нет, не включаются (товарная позиция 2843).

  • Главная
  • "ПОЯСНЕНИЯ К ТОВАРНОЙ НОМЕНКЛАТУРЕ ВНЕШНЕЭКОНОМИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ РОССИЙСКОЙ ФЕДЕРАЦИИ (ТН ВЭД РОССИИ)" (утв. ГТК РФ) (Том I, раздел VI, группы 28, 29)